Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 6.1: **Basic Concepts.**

Definition:

A graph G is a pair of finite sets $\{V, E\}$ where V is called the set of nodes or vertices and E is called the set of edges with each edge $e \in E$ we associate an ordered pair (a, b) they are called the endnodes of e.

Math 152

Definition:

A graph with no self loop and no parallel edges is called a simple graph.

Definition:

Let $x \in V$ then degree (x) is the number of edges incident to x.

Theorem:

Let $G = \{ V, E \}$ be a graph, then $2|\mathbf{E}|$ equal the sum of degree of the vertices.

In any graph, the number of edges with odd degree is even. $2|\mathbf{E}| = \text{deg}(x1) + \text{deg}(x2) + \dots + \text{deg}(xn)$ Example:

Find the number of vertices (nodes) in a graph with exactly 6 edges in which each node is of degree 2

 $2|\mathbf{E}| =$ the sum of degrees,

Let n be the number of nodes.

 $2|\mathbf{E}| = 2n$ 12 =2n

Example:

Find the number of vertices (nodes) in a graph with exactly 12 edges, nodes degree 3, and the remaining of degree 2 $2|\mathbf{E}| =$ the sum of degrees, Let n be the number of vertices (nodes). $2|\mathbf{E}| = 2.3 + (n-2).2$ 24 = 6 + 2n - 4= 2n + 224 22 =2n11 = n Example: nodes of degree 3, and 9 of Can we construct a graph with 12 degree e and degree 4. $2|\mathbf{E}|$ = 2.3 + 9.424 = 6 + 36Then can't we construct a graph Definition: A simple graph with n nodes in which every pair of distinct nodes is connected by an edges, is called complete graph of n nodes and denoted by K_m Example K_3 K_4 K_5

Math 152

Note:

In K_n:

- 1. Degree (x) = n -1, for any node x 2. $|\mathbf{E}| = \frac{n(n-1)}{2}$
- 3. $2|\mathbf{E}| = n(n-1)$

Example:

with endnodes a and b, then $F_E(e)$ is an edge in G with endnodes $F_V(a)$ and $F_V(b)$.

Not isomorphic

Math 152

Math 152

Propositions:

- 1. Suppose that $G = \{ V, E \}$ and $G` = \{ V`, E` \}$ are isomorphic under the bijection $F_V: V \rightarrow V`$ and $F_E: E \rightarrow E`$
 - i. let x be a node in V, then the degree of x equal to the degree of F_V (x)
 - ii. the graph G and G` must possess the same number of nodes of any given degree
 - iii. if e is an edge in G with endnodes a and b, then the endnodes of $F_E(e)$ in G` have the same degrees as a and b.

Example:

G6

The graph shown cannot be isomorphic because G5 has a node of degree 4 whereas G6 does not.

