Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 6.1:

Basic Concepts.

Definition:

A graph G is a pair of finite sets $\{V, E\}$ where V is called the set of nodes or vertices and E is called the set of edges with each edge $e \in E$ we associate an ordered pair (a, b) they are called the endnodes of e.

Example:

Let $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{E}=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4\}$ where:
$e 1=\{a, b\}$
$\mathrm{e} 2=\{\mathrm{b}, \mathrm{c}\}$
$e 3=\{b, d\}$
e4 $=\{a, c\}$
draw the diagram of graph $\{\mathrm{V}, \mathrm{E}\}$

Example:

Let $G=\{V, E\}$ be a graph whefe:
$\mathrm{V}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
$E=\{e 1, e 2, e 3, e 4, e 5\}$
$\mathrm{e} 1=\{\mathrm{x}, \mathrm{y}\}$
$e 2=\{y, z\}$
$e 3=\{z, x\}$
e4
$e 4=\{x, y\}$
draw the diagram of graph $\{\mathrm{V}, \mathrm{E}\}$

e4: is called self loop.
E1, e5: are called parallel edge.

Definition:

A graph with no self loop and no parallel edges is called a simple graph.
Definition:
Let $\mathrm{x} \in \mathrm{V}$ then degree (x) is the number of edges incident to x .
Theorem:
Let $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\}$ be a graph, then $2|\mathrm{E}|$ equal the sum of degree of the vertices.

Example:

The number of degree of the graph
the degree is:

$2+3+2+1=2|\mathrm{E}|$
$8=2 \mid$ 티
$4=|\mathbf{E}|\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4\}$
Example:
The number of degree of the gap
the degree is
$5+3+2$
$10=2|E|$
$5=\mathbf{k}\left\{\mathrm{e}^{2}, \mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5\right\}$
Corollary:
In any graph, the number of edges with odd degree is even.
$2|E|=\operatorname{deg}(x 1)+\operatorname{deg}(x 2)+\ldots \ldots+\operatorname{deg}(x n)$

Example:

Find the number of vertices (nodes) in a graph with exactly 6 edges in which each node is of degree 2
$2|\mathbf{E}|=$ the sum of degrees,
Let n be the number of nodes.
$2|E|=2 n$
$12=2 n$
$\mathrm{n}=6$

Example:

Find the number of vertices (nodes) in a graph with exactly 12 edges, And 2 nodes degree 3 , and the remaining of degree 2
$2|\mathbf{E}|=$ the sum of degrees,
Let n be the number of vertices (nodes).
$2|\mathbf{E}|=2.3+(\mathrm{n}-2) .2$
$24=6+2 n-4$
$24=2 n+2$
$22=2 n$
$11=\mathrm{n}$

Example:

Can we construct a graph with 12 degree and 2nodes of degree 3, and 9 of degree 4.
$2|\mathrm{E}| \quad=2.3+9.4$
$24=6+36$
Then can't we construct a raph.
Definition:
A simple graph yith nodes which every pair of distinct nodes is connected by an edges, is calledreamprete graph of n nodes and denoted by K_{m}

Note:
In K_{n} :

1. Degree $(\mathrm{x})=\mathrm{n}-1$, for any node x
2. $|\mathbf{E}|=\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
3. $2|\mathbf{E}|=\mathrm{n}(\mathrm{n}-1)$

Example:

Find $|\mathbf{E}|$ in graph with 5 nodes, and 2 of degree 3 , and 3 of degree 2 .
$2|\mathbf{E}|=2.3+3.2$
$2|\mathbf{E}|=6+6$
$2|\mathbf{E}|=12$
$|E|=6$

Definition:

Let $G=\{V, E\}, G^{\prime}=\left\{V^{\prime}, E^{\prime}\right\}$, the graphs G and G^{\prime} are called isomorphic if there exist bijection $F_{v}: V \rightarrow V^{\prime}$ and $F_{E} E \rightarrow E^{\prime}$ such that if e is an edges in E with endnodes a and b, then $F_{E}(e)$ is an elge in ${ }^{\circ}$ with endnodes $F_{v}(a)$ and $\mathrm{F}_{\mathrm{v}}(\mathrm{b})$.

Not isomorphic

Not isomorphic

Example:

$\underline{\mathrm{F}_{\mathrm{V}}}$
$a \rightarrow 1$
${ }_{b} \rightarrow 2$
$c \rightarrow 3$
${ }_{d}>_{4}$

\underline{F}_{E} (edges).

$$
\begin{aligned}
& \mathrm{e} 1 \longrightarrow \mathrm{e}^{`} \\
& \mathrm{e} 2 \longrightarrow \mathrm{e} 2
\end{aligned}
$$

Propositions:

1. Suppose that $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\}$ and $\mathrm{G}^{\prime}=\left\{\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right\}$ are isomorphic under the bijection $\mathrm{F}_{\mathrm{V}}: \mathrm{V} \rightarrow \mathrm{V}^{`}$ and $\mathrm{F}_{\mathrm{E}}: \mathrm{E} \rightarrow \mathrm{E}^{`}$
i. let x be a node in V, then the degree of x equal to the degree of F_{V} (x)
ii. the graph G and $\mathrm{G}^{`}$ must possess the same number of nodes of any given degree
iii. if e is an edge in G with endnodes a and b, then the endnodes of $\mathrm{F}_{\mathrm{E}}(\mathrm{e})$ in G^{\prime} have the same degrees as a and b .

Example:

G5

G6

The graph shown cannot be isomorphic because G5 has a node of degree 4

