Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 5.5:

Order Relations.

Definition:

A relation R on a set A is called partial relation if it reflexive, transitive, and anti-symmetric.
The set A under this relation is called partially ordered set (poset)

Example:

Let $A=Z$ and define the relation R on A by ${ }_{x} R_{y}$ if $x \leq y$

1. $\mathrm{x} \leq \mathrm{x}$, for all $\mathrm{x} \in \mathrm{Z}$
$\Rightarrow{ }_{x} R_{x}$ for all $x \in Z$
\therefore reflexive
2. $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z} \Rightarrow \mathrm{x} \leq \mathrm{z}$
\therefore transitive
3. $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x} \Rightarrow \mathrm{x}=\mathrm{y}$
\therefore anti-symmetric
$\therefore \mathrm{R}$ is partial order and z is a poset
If ${ }_{x} R_{y}$ then we write $x \leq y$ and say x precedes y.
Example:
Let $A=\{a, b, c, d, e\}$ and $R=\{(a, a),(b, b),(c, c),(d, d),(e, e)(a, b),(b, c),(a, c)(a, d),(d, e),(a, e)\}$ R is partial order on A

- the Hasse diagram of thrslrelation is given by:

An order relation can be represented by a diagram called Hasse diagram we omit the self loops and the arrows implied be transitivity and if $(a, b) \in R$, then b is above a.

Example:

Let $S=\{a, b, c\}$, then $[P(S) \in, \subseteq]$ is a poset ${ }_{A} R_{B}$ iff $A \subseteq B$
$P(S)=\{\Phi, S,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$

Example:

Let $\mathrm{A}=\{1,2,3,4,6,8,12,24\}$ and let \leq be the relation defined $\mathrm{by} \mathrm{x} \leq \mathrm{y}$ (x precedes y) iff $\mathrm{x} \mid \mathrm{y}$ (x divise y), draw the Hasse diagram for this relation.

Definition:
A partial order \leq (precedes) on a set A is said to be total order if every pair of elements $\quad x, y \in A$ either $x \leq y$ or $y \leq x$ (x precedes y), in this case the set A is called totally ordered set under this relation.

Definition:
Suppose A is a poset under \leq (precedes) and suppose that $t \in A$ and $x \leq t$ (x precedes t) for all $x \in A$ we call t greatest elements and suppose that $w \in A$ and $\mathrm{w} \leq \mathrm{x}$ (w preeedes x) for all $\mathrm{x} \in \mathrm{A}$ we call w least elements.

Definitio
A totally ordered set is called well - ordered iff every subset of A has a least element.

Example:

Let $\mathrm{A}=\{1,2,3,4,6,8,12,24\}$ and let \leq be the relation defined by $\mathrm{x} \leq \mathrm{y}$ (x precedes y) iff $\mathrm{x} \mid \mathrm{y}$ (x divise y), draw the Hasse diagram for this relation.

$\mathrm{B}=\{1,2,3,4,6,8,12,24\} \rightarrow$ called totally ordered
$\mathrm{C}=\{1,2,6,12\} \rightarrow$ called NOT totally ordered
$\mathrm{D}=\{1,2,4,6,8\} \rightarrow$ called NOT totally ordered 1: least element has NO greatest element
$\mathrm{E}=\{3,6,8,12,24\} \rightarrow$ called NOT potally ordere Has NO least element 24: greatest element

Example:

(N, \leq (precedes)) totalporde and well ordered
1: least element has NO greatest element

Example:

($\mathrm{Z} . \leq$ (precedes)) totally order, and NOT well ordered Has NO teast element
And $\{\in \mathbb{Z}: x \leq 0\}$
Defintion:
Let A be a poset under \leq (precedes), let S be a subset of A , an element $\mathrm{x} \in \mathrm{A}$ is called on upper bound of S iff $S \leq x(S$ precedes $x)$ for all $s \in S$. An element $y \in A$ is called a lower bound of S iff $y \leq S$ (y precedes S) for all $s \in S$.
(A, \leq) poset and $\mathrm{S} \subseteq \mathrm{A}$

Definition:

An element $z \in A$ is called least upper bound of S if z is an upper bound of S, and $\mathrm{z} \leq \mathrm{x}$ (z precedes x) for all upper bound x , denoted by L.u.b S
An element $w \in A$ is called greatest lower bound of S if w is a lower bound of S , and $\mathrm{x} \leq \mathrm{w}$ (x precedes w) for all lower bound x , denoted by g.l.b S

Example:

Let $\mathrm{A}=\{1,2,3,4,6,8,12,24\}$ and let \leq be the relation defined by (x precedes y) iff x|y (x divise y).
$\mathrm{S}=\{2,4,12\}$
The upper bound of $S=\{12,24\}$
The least upper bound (L.u.b) $=\{12\}$
The lower bound of $\mathrm{S}=\{1,2\}$
The greatest lower bound (g.l.b) $=\{2\}$

Example:
Let $S=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, then $R(\mathrm{~S}) \in\}$ is a poset ${ }_{A} \mathrm{R}_{\mathrm{B}}$ iff $\mathrm{A} \subseteq \mathrm{B}$
$P(S)=\{\Phi, \mathrm{S},\{\mathrm{a}\},\{\mathrm{b},\{\mathrm{c}\}\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$

$\mathrm{S}=\{\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
The upper bound of $S=\{A,\{b, c\}\}$
The least upper bound (L.u.b) $=\{\mathrm{a}, \mathrm{b}\}$
The lower bound of $\mathrm{S}=\{\boldsymbol{\Phi},\{\mathrm{b}\}\}$
The greatest lower bound (g.l.b) $=\{\{\mathrm{b}\}\}$

Example:

Let (N, \leq (precedes)) be a poset
Let $S=\{4,5\}$
The upper bound of $S=\{5,6,7,8, \ldots \ldots \ldots \ldots\}$
The least upper bound (L.u.b) $=\{5\}$
The lower bound of $S=\{1,2,3,4\}$
The greatest lower bound (g.l.b) $=\{4\}$

Example:

Let (R, \leq (precedes)) be a poset
Let $S=\{x: 0<x<1\}$
The upper bound of $S=\{x: 1 \leq x\}=[1, \infty)$
The least upper bound (L.u.b) $=\{1\}$
The lower bound of $S=(-\infty, 0$]
The greatest lower bound (g.l.b) $=\{0\}$
Definition:
A poset (A, \leq (precedes)) is called Lattice iff evefy subset of exactly two elements has a greatest lower bound (g.l.b) and least upper bound (L.u.b)

Example:
(R, \leq (precedes))
($\mathrm{N}, \leq($ precedes $)$)
(Z, \leq (precedes))
Example:
Let (A, \leq (precedes) be a posetwith the diagram

The least upper bound (L.u.b) for $(\mathrm{a}, \mathrm{b})=\{\mathrm{a}\}$
The greatest lower bound (g.l.b) for (a, b) $=\{d\}$

Example:

Let the diagram of a poset be given by:
Not Lattice
Has no least upper bound (L.u.b)
Has no greatest lower bound (g.l.b)

Example:

Let (N, \leq (precedes)) and let $\mathrm{n} \leq \mathrm{m}$ (n precedes m) iff $\mathrm{n} \mid \mathrm{m}$ (n divise m). S $=\{2,3\}$
The upper bound of $S=\{6,12,18,24, \ldots \ldots \ldots \ldots \ldots\}$
The least upper bound (L.u.b) $=\{6\}$
The lower bound of $S=\{1\}$
The greatest lower bound (g.l.b) $=\{1\}$
Clarification of the previous example:
Let $S=\{a, b\}$
The upper bound of $S=\{a b, 2 a b, 3 a b, 4 a b$, \qquad
The least upper bound (L.u.b) $=\{\mathrm{a}, \mathrm{b}\}$
The greatest lower bound (g.l.b) $=\{\mathrm{a}, \mathrm{b}\}$
The least upper bound (L.u.b) = Least common multiple (L.
M) $\{a, b\}$

The greatest lower bound (g.l.b) $=$ Greatest common dipiser (a.cD) $=\{\mathrm{a}, \mathrm{b}\}$

Definition:

$\operatorname{Let}(\mathrm{A}, \leq$ (precedes)) Lattice and $\mathrm{x}, \mathrm{y} \in$ A then
We denoted least upper bound (L.u.b) of $\{x, y ;$ by $x y$ and call is join of x and y, and we denoted greatest loperbound (\% b) of $\{x, y\}$ by $x \wedge y$ and call it the meet of x and y

Theorem:
Let A be a lattice, and $x, y, z _$A, then
a. $\quad x \wedge x$
b. $\quad \mathrm{x}=\mathrm{x}$
c. $\quad x \vee y=$
d. $\quad x \wedge y$
e. $x \wedge(a y)=(x \wedge y) \wedge z$

Example:
$\operatorname{Let}(\mathbf{P}(\mathrm{A}), \leq($ precedes $))$ is a poset
S, T
$\mathrm{S} \wedge \mathrm{T}=$ greatest lower bound (g.l.b) $=(\mathrm{S} \cap \mathrm{T})$
$\mathrm{S} \vee \mathrm{T}=$ least upper bound (L.u.b) $\quad=(\mathrm{S} \square \mathrm{T})$

