Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Seme*s*ter 2009/2010

Done by: Osama Alkhoun

SECTION 5.5: Order Relations.

Definition:

A relation R on a set A is called **partial relation** if it reflexive, transitive, and anti-symmetric.

The set A under this relation is called partially ordered set (poset)

An order relation can be represented by a diagram called Hasse diagram we omit the self loops and the arrows implied be transitivity and if $(a, b) \in R$, then b is above a.

Example: Let S = { a, b, c }, then [P (S) \in , \subseteq] is a poset _AR_B iff A \subseteq B $P(S) = \{ \Phi, S, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} \}$ S {b, c} $\{a, c\}$ $\{a, b\}$ $\{a\}$ {b} {c} Example: Let $A = \{1, 2, 3, 4, 6, 8, 12, 24\}$ and let \leq be the relation defined (x precedes y) iff x|y (x divise y), draw the Hasse diagram for this relation. 12 8 6 4 3 2 Definition: A partial order \leq (precedes) on a set A is said to be total order if every pair of $x, y \in A$ either $x \leq y$ or $y \leq x$ (x precedes y), in this case the set elements

A is called totally ordered set under this relation.

Definition:

Suppose A is a poset under \leq (precedes) and suppose that $t \in A$ and $x \leq t$ (x precedes t) for all $x \in A$ we call t greatest elements and suppose that $w \in A$ and $w \leq x$ (w precedes x) for all $x \in A$ we call w least elements.

Definition:

A totally ordered set is called well – ordered iff every subset of A has a least element.

Osama Alkhoun (Mobile: 0796484613)

Math 152

Example:

Let $A = \{1, 2, 3, 4, 6, 8, 12, 24\}$ and let \leq be the relation defined by $x \leq y$ (x precedes y) iff x|y (x divise y), draw the Hasse diagram for this relation.

 $B = \{ 1, 2, 3, 4, 6, 8, 12, 24 \} \rightarrow$ called totally ordered

 $C = \{ 1, 2, 6, 12 \} \rightarrow$ called NOT totally ordered

- D = { 1, 2, 4, 6, 8} → called NOT totally ordered 1: least element has NO greatest element
- E = { 3, 6, 8, 12, 24 } → called NOT totally ordered Has NO least element 24: greatest element

Example:

(N , ≤ (precedes)) totally order, and well ordered 1: least element has NO greatest element

Example:

 $(Z, \leq (precedes))$ totally order, and NOT well ordered

Has NO least element And $\{x \in \mathbb{Z} : x \le 0\}$

And $\{x \in \mathbb{Z}: x\}$

Definition:

Let A be a poset under \leq (precedes), let S be a subset of A, an element $x \in A$ is called on upper bound of S iff S $\leq x$ (S precedes x) for all $s \in S$. An element $y \in A$ is called a lower bound of S iff $y \leq S$ (y precedes S) for all $s \in S$.

Math 152

 (A, \leq) poset and $S \subseteq A$

Definition:

An element $z \in A$ is called **least upper bound** of S if z is an upper bound of S, and $z \le x$ (z precedes x) for all upper bound x, denoted by **L.u.b** S An element $w \in A$ is called **greatest lower bound** of S if w is a lower bound of S, and $x \le w$ (x precedes w) for all lower bound x, denoted by **g.l.b** S

Osama Alkhoun (Mobile: 0796484613)

Math 152

Example: Let (N, \leq (precedes)) be a poset Let S = { 4, 5 } The upper bound of S = { 5, 6, 7, 8, } The least upper bound (L.u.b) = { 5 } The lower bound of S = { 1, 2, 3, 4 } The greatest lower bound (g.l.b) = { 4 }

Example: Let (R , \leq (precedes)) be a poset Let S = { x: 0 < x < 1 } The upper bound of S = { x: 1 \leq x } = [1, ∞) The least upper bound (L.u.b) = { 1 } The lower bound of S = (- ∞ , 0] The greatest lower bound (g.l.b) = { 0 }

Definition:

A poset (A, \leq (precedes)) is called Lattice ifference subset of exactly two elements has a greatest lower bound (g.l.b) and least upper bound (L.u.b)

Example:

 $(R, \leq (precedes))$ $(N, \leq (precedes))$ are all Lattices $(Z, \leq (precedes))$

Example:

Let (A, \leq (precedes) the a poset with the diagram

c a jis Lattice

The least upper bound (L.u.b) for $(a, b) = \{a\}$ The greatest lower bound (g.l.b) for $(a, b) = \{d\}$

Example: Let the diagram of a poset be given by: Not Lattice Has no least upper bound (L.u.b) Has no greatest lower bound (g.l.b)

Math 152

Example: Let (N, \leq (precedes)) and let n \leq m (n precedes m) iff n|m (n divise m). $S = \{2, 3\}$ The upper bound of $S = \{ 6, 12, 18, 24, \dots \}$ The least upper bound $(L.u.b) = \{ 6 \}$ The lower bound of $S = \{1\}$ The greatest lower bound $(g.l.b) = \{1\}$ Clarification of the previous example: Let $S = \{a, b\}$ The upper bound of $S = \{ab, 2ab, 3ab, 4ab, \dots\}$ The least upper bound $(L.u.b) = \{a, b\}$ The greatest lower bound $(g.l.b) = \{a, b\}$ The least upper bound (L.u.b) = Least common multiple (L. (\mathbf{M}) $\{a, b\}$ The greatest lower bound $(g.l.b) = Greatest common divisor (G.C.D) = \{a, b\}$ Definition: Let (A, \leq (precedes)) Lattice and x, y \in ther We denoted least upper bound (L.u.b) of $\{x, y\}$ by $x \vee y$ and call is join of x and y, and we denoted greatest lower bound (2.1.b) of $\{x, y\}$ by $x \wedge y$ and call it the meet of x and y Theorem: Let A be a lattice, and $x, y, z \in$ a. $\mathbf{x} \wedge \mathbf{x}$ b. $\mathbf{x} = \mathbf{x}$ $X \vee Y =$ c. d. Х/ $x \wedge y) \wedge z$ e. \mathbf{f} $x \lor y) \lor z$ Example: Let $(\mathbf{P}(\mathbf{A}), \leq (\text{precedes}))$ is a poset S, T \in $S \wedge T$ = greatest lower bound (g.l.b) = ($S \cap T$) $S \lor T = \text{least upper bound (L.u.b)} = (S \square T)$

osana hind