Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 5.3: **Equivalence of Relations.**

Definition:

A relation R on a set A is called equivalence relation iff R is <u>reflexive</u>, <u>symmetric</u>, and <u>transitive</u>.

Example:

Let $A = \{a, b, c\}$ $R = \{(a, a), (b, b), (c, c)\}$ Is an equivalence relation A

Example:

Let $A = \{a, b, c, d\}$ $R = \{(a, a), (b, b), (c, c), (d, d)\}$ find an equivalence relation on A? solution:

1. if (a, c) and (b, d) must belongs to R

 $R = \{ (a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (b, d), (d, b) \}$

2. if (a, c) and $(c, d) \in \mathbb{R}$

 $R = \{ (a, a), (b, b), (c, c), (d, d), (a, c), (c, d), (c, a), (d, c), (d, a), (a, d) \}$

Example:

Let A be the set of integers and define a relation R on Z by n_{5}^{R} m if n – m is divisible by 5.

Solution:

Clarification:

 $1 \stackrel{\text{R}}{_5} 6 \rightarrow 1 - 6 = -5, -5$ is divisible by 5.

 $1 \frac{R}{5} 11 \rightarrow 1 - 11 = -10, -10$ is divisible by 5.

 $1 \frac{R}{5} - 4 \rightarrow 1 - 4 = 5$, 5 is divisible by 5.

 $2 \stackrel{\text{R}}{_5} 7 \rightarrow 2 - 7 = -5$, 5 is divisible by 5.

 $2\frac{R}{3}$ 12 \rightarrow 2 12 = 10, -10 is divisible by 5.

 $2 \stackrel{R}{_5} \rightarrow 2 - 3 = 5$, 5 is divisible by 5.

 $2\frac{R}{5}$ -13 2 - -13 = -15, -15 is divisible by 5.

Math 152

Example:

Let A be the set of integers and define a relation R on Z by n_{5}^{R} m if n – m is divisible by 5.

Solution:

Is $\frac{R}{5}$ an equivalence relation.

reflexive? 1. $n \stackrel{R}{\underset{s}{\sim}} n = \text{ for all } n \in \mathbb{Z} \text{ iff } n - n \text{ is divisible by } 5 \rightarrow n - n = 0$ if 0 is divisible by 5 \therefore n $\stackrel{R}{_{5}}$ n for all n \in Z $\therefore \frac{R}{5}$ is reflexive symmetric? 2. $_{x}R_{y} \in A, _{y}R_{x} \in A$ let $n \stackrel{R}{_{5}} m \in Z$ (want $m \stackrel{R}{_{5}} n \in Z$) $n \stackrel{R}{_{5}} m \text{ if } n - m = 5r \text{ for } r \in Z$ $m \stackrel{R}{_{5}} n \text{ if } (n-m) * -1 = 5r \text{ for } r \in Z$ m_{5}^{R} n if m - n = -5r for $r \in Z$ $m_{5}^{R} n \text{ if } m - n = 5 (-r) = 5 (s) f$ $\therefore m_{5}^{R} n$ $\therefore \frac{R}{5}$ is symmetric 3. transitive? want $n \stackrel{R}{5} t \in Z$) let $n \stackrel{R}{\leq} m \in Z$ and n-m=5rm-t=5s= 5r + 5s(r+s)transitive

Math 152

In general:

For any positive integer m, define a relation R on the set of all integers by x $\underset{m}{R}$ y iff x – y is divisible by m, this relation is an equivalence relation for any integer.

If we have $x \underset{m}{R} y$, then we write $x \equiv y \pmod{m}$ and we say that x is congruent to y modulate m and m is called the modulate of this relation.

Example:

```
Is 9\frac{R}{5}4?
        1.
       9\frac{R}{5} 4 iff 9 – 4 is divisible by 5
       in this case we write 9 \equiv 4 \pmod{5}
               Is 23 \stackrel{R}{_{5}} 13?
       2.
       23 \frac{R}{5} 13 iff 23 – 13 is divisible by 5
       in this case we write 23 \equiv 13 \pmod{5}
               is 4 \equiv 10 \pmod{3}?
        3.
       yes, 4\frac{R}{3} 10
       4.
             is 23 \equiv 42 \pmod{19}?
       23 \equiv 42 \pmod{19}, iff 23 \frac{R}{19} 42 if
                                                       12 is divisible by 19.
Example:
Solve the following Congruen
               x + 1 \equiv 3 \pmod{2}
        1.
       2.
               2x \equiv 4 \text{ (m)}
        3.
               2\mathbf{x} \equiv 4
       4.
        5.
Solving:
                        ≤ 3 (mod 5)
        1.
                  2 \pmod{5}
                 \therefore x \equiv 2 \pmod{5}
        x = 2 + 5r, for all r \in Z
               2x \equiv 4 \pmod{5}
       2.
       2x - 4 \equiv 0 \pmod{5}
       2(x-2) \equiv 0 \pmod{5}
       x - 2 \equiv 0 \pmod{5}
        x \in \{\dots, -13, -8, -3, 2, 7, 12, 17, \dots\}
```

 $\therefore x \equiv 2 \pmod{5}$ x = 2 + 5r, for all $r \in Z$ 3. $2x \equiv 4 \pmod{8}$ $2x - 4 \equiv 0 \pmod{8}$ $2(x-2) \equiv 0 \pmod{8}$ 2(x-2) = 0 + 8r, for all $r \in Z$ x - 2 = 4r, for all $r \in Z$ x = 2 + 4r, for all $r \in Z$ $x \in \{\dots, -6, -2, 2, 6, 10, 14, \dots\}$ 4. $x + 5 \equiv 4 \pmod{9}$ \equiv -1 (mod 9) Х $\equiv 8 \pmod{9}$, where 9 + -1 = 8Х \therefore x = 8 + 9r, for all r \in Z $x \in \{\dots, -10, -1, 8, 17, 26, 35, \dots\}$ $2x \equiv 3 \pmod{6}$ 5. 2x = 3 + 6r for some $r \in Z$ 2x - 6r divisible by 2 but 3 not divisible then Congruence has no relation. $3x \equiv 3 \pmod{6}$ 6. 3x = 3 + 6r for some r 1x = 2 + 6r divisible by x = 1 + 6r(mod Supposed: Let A a finite set and let $f: A \rightarrow A$ be a permutation on A, then f defined equivalence relation R₂ by

x $R_f y$ iff there exist n > 0, such that $y = f^n (x)$, where f^n is the function f composed n times.

Math 152

(v) = w

Z

1.1. $f(z) = f^{1}(z) = v$ 1.2. $f \circ f(z) = f^{2}(z) = w$ W 1.3. $f \circ f \circ f(z) = f^{3}(z)$ = z1.4. $f \circ f \circ f \circ f(z) = f^{4}(z) = v$ 1.4. $f \circ f \circ f \circ f (w) = f^{4}$ (w) = z **NOTE:** $f^{0}(x) = x$ $f^{1}(x) = f(x) = y$ $f^{2}(x) = f[f(x)]$ $f^{3}(x) = f(f[f(x)])$ $f^{4}(x) = f[f(f[f(x)])]$ $f^{5}(u) = f(f[f(f[f(x)])])$