Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 5.3:

Equivalence of Relations.

Definition:

A relation R on a set A is called equivalence relation iff R is reflexive, symmetric, and transitive.

Example:

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \quad \mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$
Is an equivalence relation A

Example:

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \quad \mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{d})\}$ find an equivalence relation on A ?
solution:

> 1. \quad if (a, c) and (b, d) must belongs to R
> $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{d}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{a}),(\mathrm{b}, \mathrm{d}),(\mathrm{c}, \mathrm{b})\}$
> 2. $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{d}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{a}),(\mathrm{a}, \mathrm{d})\}$

Example:

Let A be the set of integers and define retation R on Z by $n{ }_{s}^{R} m$ if $n-m$ is divisible by 5 .
Solution:
Clarification:
$1 \mathrm{R}_{5} 6 \rightarrow 1-6=-5,-5$ savisible by 5 .
$1_{s}^{R} 11 \rightarrow 1-11=-10,10$ is divisible by 5 .
$1_{5}^{\mathrm{R}}-4 \rightarrow 1-\mathrm{R}^{-} 5$, 5 is divisible by 5 .
$2{ }_{5}^{\mathrm{R}} \longrightarrow 2-7=-5,5$ divisible by 5 .
$2{ }_{5}^{\mathrm{R}} 12 \rightarrow 2 \rightarrow 12=10,-10$ is divisible by 5 .
$2 \mathrm{R}_{5} \rightarrow 2 \rightarrow 3=5,5$ is divisible by 5 .
$2{ }_{s}^{R}-13 \rightarrow 2-13=-15,-15$ is divisible by 5 .

Example:

Let A be the set of integers and define a relation R on Z by $n{ }_{s}^{R} m$ if $n-m$ is divisible by 5 .
Solution:
Is ${ }_{5}$ an equivalence relation.

1. reflexive?
$\mathrm{n}_{5}^{\mathrm{R}} \mathrm{n}=$ for all $\mathrm{n} \in \mathrm{Z}$ iff $\mathrm{n}-\mathrm{n}$ is divisible by $5 \rightarrow \mathrm{n}-\mathrm{n}=0$
if 0 is divisible by 5
$\therefore \mathrm{n}_{5}^{\mathrm{R}} \mathrm{n}$ for all $\mathrm{n} \in \mathrm{Z}$
$\therefore{ }_{5}^{\mathrm{R}}$ is reflexive
2. symmetric?
${ }_{x} \mathrm{R}_{\mathrm{y}} \in \mathbf{A},{ }_{\mathrm{y}} \mathrm{R}_{\mathrm{x}} \in \mathbf{A}$
let $\mathrm{n}_{5}^{\mathrm{R}} \mathrm{m} \in \mathrm{Z}$ (want $\mathrm{m}_{5}^{\mathrm{R}} \mathrm{n} \in \mathrm{Z}$)
$n_{s}^{R} m$ if $n-m=5 r$ for $r \in Z$
$\mathrm{m}_{s}^{\mathrm{R}} \mathrm{n}$ if $(\mathrm{n}-\mathrm{m}) *-1=5 \mathrm{r}$ for $\mathrm{r} \in$
$\mathrm{m}_{5}^{R} \mathrm{n}$ if $\mathrm{m}-\mathrm{n}=-5 \mathrm{r}$ for $\mathrm{r} \in \mathrm{Z}$
$\mathrm{m}_{5}^{\mathrm{R}} \mathrm{n}$ if $\mathrm{m}-\mathrm{n}=5(-\mathrm{r})=5(\mathrm{~s})$
$\therefore \mathrm{m}_{5}^{\mathrm{R}} \mathrm{n}$
$\therefore{ }_{5}^{\mathrm{R}}$ is symmetric
3. transitive?

$\mathrm{n}-\mathrm{m}=5 \mathrm{r}$
$\mathrm{m}-\mathrm{t}=5 \mathrm{~s}$
$1-\mathrm{m}-\mathrm{m} \mathrm{r}_{\mathrm{t}}=5 \mathrm{r}+5 \mathrm{~s}$

In general:
For any positive integer m , define a relation R on the set of all integers by x ${ }_{\mathrm{m}}^{\mathrm{R}} \mathrm{y}$ iff $\mathrm{x}-\mathrm{y}$ is divisible by m , this relation is an equivalence relation for any integer.

If we have $x_{m}^{R} y$, then we write $x \equiv y(\bmod m)$ and we say that x is congruent to y modulate m and m is called the modulate of this relation.

Example:

1. Is $9{ }_{5}^{\mathrm{R}} 4$?
$9{ }_{5}^{R} 4$ iff $9-4$ is divisible by 5
in this case we write $9 \equiv 4(\bmod 5)$
2. Is $23{ }_{5}^{R} 13$?
$23{ }_{5}^{R} 13$ iff $23-13$ is divisible by 5 in this case we write $23 \equiv 13(\bmod 5)$
3. \quad is $4 \equiv 10(\bmod 3)$?
yes, $4{ }_{3}^{\mathrm{R}} 10$
4. \quad is $23 \equiv 42(\bmod 19)$?
$23 \equiv 42(\bmod 19)$, iff $23{ }_{19}^{\mathrm{R}} 42$ if 23 - 42 is divisible by 19.
Example:
Solve the following Congruen Ges 5
5. $x+1 \equiv 3(\operatorname{mec} 5)$
6. $2 x \equiv 4(\bmod 5)$
7. $2 x \equiv 4$ mod 8
8. $x+5=4(\bmod 9)$
9. $2 x=3(\operatorname{mog})$

Sol ing

1. $x+y=3(\bmod 5)$
$\equiv 2(\bmod 5)$ $-13,-8,-3,2,7,12,17, \ldots \ldots \ldots\}$
$\therefore \mathrm{x} \equiv 2(\bmod 5)$
$x=2+5 r$, for all $r \in Z$
2. $2 \mathrm{x} \equiv 4(\bmod 5)$
$2 \mathrm{x}-4 \equiv 0(\bmod 5)$
$2(x-2) \equiv 0(\bmod 5)$
$\mathrm{x}-2 \equiv 0(\bmod 5)$
$x \in\{\ldots \ldots .,-13,-8,-3,2,7,12,17, \ldots \ldots \ldots\}$
$\therefore x \equiv 2(\bmod 5)$
$x=2+5 r$, for all $r \in Z$
3. $2 x \equiv 4(\bmod 8)$
$2 \mathrm{x}-4 \equiv 0(\bmod 8)$
$2(\mathrm{x}-2) \equiv 0(\bmod 8)$
$2(x-2)=0+8 r$, for all $r \in Z$
$x-2=4 r$, for all $r \in Z$
$x=2+4 r$, for all $r \in Z$
$x \in\{\ldots \ldots .,-6,-2,2,6,10,14, \ldots \ldots .$.
4. $x+5 \equiv 4(\bmod 9)$
$\mathrm{x} \equiv-1(\bmod 9)$
$x \equiv 8(\bmod 9)$, where $9+-1=8$
$\therefore x=8+9 r$, for all $r \in Z$
$\mathrm{x} \in\{$. \qquad $-10,-1,8,17,26,35$,
5. $2 \mathrm{x} \equiv 3(\bmod 6)$
$2 x=3+6 r$ for some $r \in Z$ $2 \mathrm{x}-6 \mathrm{r}$ divisible by 2 but 3 not divisible by
then Congruence has no relation.
6. $3 x \equiv 3(\bmod 6)$
```
3x}=3+6r for some r
1x}=2+6r divisible by 3
x}=1+6
```

Supposed:
Let A a finite set and let $f: A \rightarrow A$ be a permutation on A, then f defined equivalence elation R_{f} by
x R y iff there exist $n>0$, such that $y=f^{n}(x)$, where f^{n} is the function f composed n times.

Example:
Let $\mathrm{A}=\{\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{z}\}$ and let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ defined by

r
1.1. $f(r)=f^{1}(r)=s$
1.2. $f \circ f(r)=f^{2}(r)=t$
1.3. $f \circ f \circ f(r)=f^{3}(r)=$
u
1.4. $f \circ f \circ f \circ f(r) f^{7}$
(r) $=\mathrm{r}$
1.5. $\mathrm{f} \circ \mathrm{f} \circ \mathrm{f} \sim \mathrm{f}(\mathrm{n})=$
(r) $=\mathrm{s}$
t

1.5. $\mathrm{f}^{\circ} \mathrm{f}^{\circ} \mathrm{f} \circ \mathrm{f} \circ \mathrm{f}(\mathrm{t})=\mathrm{f}^{5}$
(t$)=\mathrm{u}$
v
1.1. $f(v)=f^{1}(v)=w$
1.2. $f \circ f(v)=f^{2}(v)=z$
1.3. $f \circ f \circ f(v)=f^{3}(v)$
$=\mathrm{v}$
1.4. $f \circ f \circ f \circ f(v)=f^{4}$

1. $f \circ f(s)=f^{2}(s)=u$
1.3. $f \circ f \circ f(s)=f^{3}(s)$
1.4. $f \circ f \circ f \circ f(s)=f^{4}$
(s) $=\mathrm{s}$
1.5. $\mathrm{f} \circ \mathrm{f} \circ \mathrm{f} \circ \mathrm{f} \circ \mathrm{f}(\mathrm{s})=\mathrm{f}^{5}$
(s) $=\mathrm{t}$
u
1.1. $f(u)=f^{1}(u)=r$
1.2. $f \circ f(u)=f^{2}(u)=s$
1.3. $\quad f \circ f \circ f(u)=f^{3}(u)$
$=\mathrm{t}$
1.4. $f^{\circ} f^{\circ} f \circ f(u)=f^{4}$
(u) $=\mathrm{u}$
1.5. $\mathrm{f}^{\circ} \mathrm{f} \circ \mathrm{f} \circ \mathrm{f} \circ \mathrm{f}(\mathrm{u})=\mathrm{f}^{5}$
(u) $=\mathrm{r}$
w
1.1. $f(w)=f^{1}(w)=z$
1.2. $f \circ f(w)=f^{2}(w)=$
v
1.3. $f \circ f \circ f(w)=f^{3}(w)$
$=\mathrm{w}$
$(\mathrm{v})=\mathrm{w}$
z
1.1. $\mathrm{f}(\mathrm{z})=\mathrm{f}^{1}(\mathrm{z})=\mathrm{v}$
1.2. $\mathrm{f} \circ \mathrm{f}(\mathrm{z})=\mathrm{f}^{2}(\mathrm{z})=$
w
1.3. $\quad \mathrm{f} \circ \mathrm{f} \circ \mathrm{f}(\mathrm{z})=\mathrm{f}^{3}(\mathrm{z})$

$$
-2
$$

1.4. $\mathrm{f} \circ \mathrm{f} \circ \mathrm{f} \circ \mathrm{f}(\mathrm{z})=\mathrm{f}^{4}$ $(z)=v$

$$
\begin{aligned}
& \text { 1.4. } \mathrm{f} \circ \mathrm{f} \circ \mathrm{f} \circ \mathrm{f}(\mathrm{w})=\mathrm{f}^{4} \\
& (\mathrm{w})=\mathrm{z}
\end{aligned}
$$

NOTE:
$\mathrm{f}^{0}(\mathrm{x})=\mathrm{x}$
$f^{1}(x)=f(x)=y$
$\mathrm{f}^{2}(\mathrm{x})=\mathrm{f}[\mathrm{f}(\mathrm{x})]$
$\mathrm{f}^{3}(\mathrm{x})=\mathrm{f}(\mathrm{f}[\mathrm{f}(\mathrm{x})])$
$\mathrm{f}^{4}(\mathrm{x})=\mathrm{f}[\mathrm{f}(\mathrm{f}[\mathrm{f}(\mathrm{x})])]$
$\mathrm{f}^{5}(\mathrm{u})=\mathrm{f}(\mathrm{f}[\mathrm{f}(\mathrm{f}[\mathrm{f}(\mathrm{x})])])$

