Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 5.2:

Composition of Relations.

We defined the composition of relation (R) with itself written $R . R$ by $x\left(R^{\circ} R\right) y$ iff $\exists_{z} \in A$ such that $x R_{z}$ and $z R y$

Example:
Let $A=\{a, b, c, d\}$ and $R=\{(a, b)(b, c),(c, a),(d, d),(d, a)\}$
Find $\mathrm{R} \circ \mathrm{R}$?
Solution:
The diagraph of R is given by

i. $\quad{ }_{x} \mathrm{R}^{0} \mathrm{y}$ iff $\mathrm{x}=\mathrm{y}$
ii. $\quad{ }_{x} R^{1}{ }_{y}$ iff $\exists 1$ arrows from x to $y \in x\left(R^{\prime}\right) y=R y$
iii. $\quad{ }_{x} R^{2}$ y iff \exists_{2} arrows from x to $y=x\left(R^{\ominus} R\right) y$
iv. $\quad{ }_{x} R^{3}{ }_{y}$ iff $\exists 3$ arrows from x to $y=\left(R^{\circ} R^{\circ} R\right) y$
v. $\quad{ }_{x} R^{4}$ y iff $\exists 4$ arrows fromx to $y=x\left(R^{\circ} R^{\circ} R^{\circ} R\right) y$
vi. $\quad{ }_{x} R^{5} y$ iff $\exists 5$ arrows from x to $y=x\left(R^{\circ} R^{\circ} R^{\circ} R^{\circ} R\right) y$
vii. $\quad{ }_{x} R^{n} y$ iff \exists_{n} arrows from x to $y=x\left(R^{\circ} R^{\circ} R^{\circ} R^{\circ} \ldots \ldots . .{ }^{\circ} R n\right) y$
$R \circ R=x(R \circ R) y={ }_{x} R^{2} \quad b$

$R \circ R \circ R=x(R \circ R \circ R) y={ }_{x} R_{y}^{3}$

$R \circ R \circ R \circ R=x(R \circ R \circ R \circ R) y={ }_{x} R_{y}^{4}$

definition:
If R a relation on a set A, then $x R \circ R y$ if $\exists z \in A$ such that ${ }_{x} R_{z}$ and ${ }_{z} R_{y} x R \circ R$ $\circ R y={ }_{x} R \circ R^{2}$ if $\exists z \in A$ such that ${ }_{x} R_{y}^{2}$ and ${ }_{z} R_{y}$
In general:
We write ${ }_{x} R^{2}$ if $\exists z \in A$ such that ${ }_{x} \mathrm{R}^{n-1}{ }_{y}$ and ${ }_{z} R_{y}$ we say that ${ }_{x} \mathrm{R}_{\mathrm{y}}^{0}$ if $\mathrm{A}_{-}=\mathrm{y}$ and ${ }_{x} \mathrm{R}_{\mathrm{y}}^{1}$ if ${ }_{x} \mathrm{R}_{\mathrm{y}}$.

If M_{R} is the matrix represent the relation $R 1$ then $M_{R} X M_{R}$ is the matrix represents $R \circ R=R^{2}$

Example:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \text { Let } \mathrm{M}_{\mathrm{R}}=
$$

be the matrix represents a relation R

The entry in the ith row and jth column of $\mathrm{M}_{\mathrm{R}} X \mathrm{M}_{\mathrm{R}}$ is given by multiplying the ith row and jth column of M_{R}

In general:
The matrix of the relation R^{n} is given by $M^{n}{ }_{R}$ where $M_{R}{ }_{R}$ is the matrix M_{R} multiplied n - times

