Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 5.2: **Composition of Relations.**

We defined the composition of relation (R) with itself written R . R by $x(R \circ R)y$ iff $\exists z \in A$ such that xRz and zRy

definition:

If R a relation on a set A, then $xR \circ Ry$ if $\exists z \in A$ such that $_xR_z$ and $_zR_y xR \circ R$ $\circ Ry = {}_{x} R \circ R^{2}_{y}$ if $\exists z \in A$ such that ${}_{x}R^{2}_{y}$ and ${}_{z}R_{y}$ In general: We write ${}_{x}R_{y}^{2}$ if $\exists z \in A$ such that ${}_{x}R_{y}^{n-1}$ and ${}_{z}R_{y}$ we say that ${}_{x}R_{y}^{0}$ if $_{x}R^{1}_{y}$ if $_{x}R_{y}$.

If M_R is the matrix represent the relation R1 then $M_R X M_R$ s the matrix represents $R \circ R = R^2$

Example:

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right) \ \text{Let} \ M_R \\$$

be the matrix represents a relation R

then M_R X M

is the matrix represented $R \circ R$

NOTÈ

The entry in the ith row and jth column of $M_R X M_R$ is given by multiplying the ith row and jth column of M_R

1 0

1

0

0

1

=

 $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

In general:

The matrix of the relation R^n is given by M^n_R where M^n_R is the matrix M_R multiplied n – times

osana hind