Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

SECTION 5.1:

Relations.

Definition:

Let A be a set, a subset R of $A \times A$ is called a relation on A If pair $(x, y) \in R$, then we say that x related to y and write ${ }_{x} R_{y}$ (x related y), otherwise we write ${ }_{x} \mathrm{R}_{\mathrm{y}}$ (x NOT related y)

Example:

Let $A=\{a, b, c, d\}, R=\{(a, c),(a, d),(b, a),(a, a),(d, c),(d, d)$ called a relation on A .
Is $\mathrm{a}_{\mathrm{b}} ? \rightarrow$ since $(\mathrm{a}, \mathrm{b}) \notin \mathrm{R}$ then ${ }_{\mathrm{a}} \mathrm{R}_{\mathrm{b}}$ Is ${ }_{b} R_{a} ? \rightarrow$ since $(b, a) \in R$ then ${ }_{b} R_{a}$ Is ${ }_{d} R_{c} ? \rightarrow$ since $(d, c) \in R$ then ${ }_{d} R_{c}$ Is ${ }_{d} R_{c} ? \rightarrow$ since $(d, c) \notin R$ then ${ }_{d} \mathbf{R}_{\mathrm{c}}$

Example:

Let $A=Z$, and define a relation R on $Z b y(n, m) \in R$, iff $n-m \geq 0$
Is $(1,2) \in \mathrm{R} ? \rightarrow \mathrm{NO}(1,2)^{\notin \mathrm{R}(1-2-1) \text { then } \mathrm{R}_{2}}$
Is $(2,1) \in \mathrm{R} ? \rightarrow \operatorname{YES}\left(2,1 \subset \mathrm{R}(2-1 F 1)\right.$ then R_{1}

B

Example:

Let $S=\{1,2,3,4,5\}$,
and let $\mathrm{R}=\{(1,1),(1,2),(2,3),(1,3),(1,4),(4,5),(5,1),(1,5),(4,1)\}$
draw a diagraph of R

Example:

draw a diagraph of the following $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$R=\{(a, a),(a, b),(b, a),(b, b),(c, b),(c, c),(b, c),(d, a),(d, d),(a, d)\}$

Example:

Let $S=\{2,3,4,6,8,42\}$
and let R be defipen as $(\mathrm{x}) \mathrm{y}^{E} \mathrm{R}$ iff x divides y
$R=\{(2,2),(2,(2,6),(2,8),(2,12),(3,3),(3,6),(3,9),(3,12)$,
$(4,4),(4,8),(4,2),(6,6),(6,12),(8,8),(9,9),(12,12)\}$
dra a a diagraph of

Remark:
Every function of the form $\mathrm{f}: \mathrm{A} \rightarrow$ A defines a relation R_{f} on A . By $(x, y) \in R_{f} \operatorname{iff} f(x)=y$

Example:

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is defined by f

$\mathrm{R}_{\mathrm{f}}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\}$

Question:
Draw a diagraph of the relation R_{f} defined by the following function f

Conversely:
Le R be arelationg a set A, if exactly one outgoing arrow from each node, then we can use R lo define a function f_{R} on A as follows $f_{R}(a)=y$ iff $(a, y) \in R$

Example

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$, and let R be a relation defined diagraph $\mathrm{f}_{\mathrm{R}}: \mathrm{A} \rightarrow \mathrm{A}$ defined by:
$\mathrm{f}_{\mathrm{R}}(\mathrm{a})=\mathrm{c}$
$\mathrm{f}_{\mathrm{R}}(\mathrm{b})=\mathrm{b}$
$f_{R}(c)=e$
$\mathrm{f}_{\mathrm{R}}(\mathrm{d})=\mathrm{a}$
$f_{R}(e)=d$

Definition:

Suppose that R is a relation defined on A , then

1. a Relation (R) is Reflexive iff wherever ${ }_{x} R_{x}$ for all $x \in A$. if $(x, x) \in R, \nabla x \in A$, is called Reflexive
2. a Relation (R) is Symmetric iff wherever ${ }_{x} R_{y}$ we have ${ }_{y} R_{x}$.
if $(x, y) \in R$, then $(y, x) \in R$, is called Symmetric
3. a Relation (R) is Transitive iff wherever ${ }_{x} R_{y}$ and ${ }_{y} R_{z}$, we have ${ }_{x} \mathrm{R}_{\mathrm{z}}$.
if $(x, y) \in R$, and $(y, z) \in R$, then $(x, z) \in R$ is called Transitiv
4. a Relation (R) is Irr-Reflexive iff wherever ${ }_{x} R_{x}$ forall $x \in A$. if $(x, x) \notin R, \forall x \in A$, is called Irr-Reflexive
5. a Relation (R) is Anti-Symmetric ifferever R_{y} and ${ }_{y} R_{x}$, we have x $=y$.
if $(x, y) \in R$, and $(y, x) \in R$, then x is called Anti-Symmetric

Properties of a relation $\mathbf{R} \subseteq \mathbf{A} \times \mathbf{A}$.

1. Reflexive if $\forall a \in A(a, a) \in R$
2. Symmetric if $\forall a \in A \quad \forall b \in A,(a, b) \in R \rightarrow(b, a) \in R$
3. Irr-Reflexive if $\forall \mathrm{a} \in \mathrm{A}($, a) $\notin \mathrm{R}$
4. Anti-symmetric if $\forall \mathrm{a} \in \mathrm{A} \forall \mathrm{b} \in \mathrm{A},(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \wedge(\mathrm{b}, \mathrm{a}) \in \mathrm{R} \rightarrow \mathrm{a}$ $=\mathrm{b}$
5. Transitive if $\forall a, b \in A,(a, b) \in R \wedge(b, c) \in R \rightarrow(a, c) \in R$

Compare a relation $R \subseteq A \times A$;

Example:

Determine whether the following relations reflexive, symmetric, transitive, antisymmetric, irreflexive
$A=\{a, b, c, d\} \quad R=\{(a, b),(b, d),(a, d),(d, a),(d, b),(b, a),(c, c)\}$

1. R is NOT reflexive $((a, a) \notin R)$
2. R is symmetric
3. R is NOT transitive
$(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{a}) \in \mathrm{R}$ but $(\mathrm{a}, \mathrm{a}) \notin \mathrm{R}$
4. $\quad R$ is NOT Irr-reflexive $((c, c) \in R)$
5. R is NOT anti-symmetric

Example:
$A=\{a, b, c, d, e\} R=\{(a, a),(a, b),(b, c),(a, c),(b, a),(c, a),(c, b),(d, e)\}$

1. $\quad \mathrm{R}$ is NOT reflexive $((\mathrm{b}, \mathrm{b}) \notin \mathrm{R})$
2. R is NOT symmetric $(d, e) \in R$ but $(e, d) \notin R$
3. R is NOT transitive
$(b, c) \in R$ and $(c, b) \in R$ but $(b, b) \notin R$
4. $\quad R$ is NOT irreflexive $((a, a) \in R)$
5. $\quad \mathrm{R}$ is NOT anti-symmetric $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{a}) \in$

Example:

$A=\{1,2,3,4,5\}$ and define a relation R on A by $(x, y) \in R$ if $x-y \leq 0$

1. R is reflexive iff $(x, x) \in R$

$$
\begin{aligned}
\text { iff } x-x & \geq 0 \\
0 & \geq 0
\end{aligned}
$$

then: R is reflexive
2. R is symmetric $(x, y) \in R$ and $(y, x) \in R$
$x-y \geq 0 \neq x-y \geq 0$
then: R is NOT symmetric
3. R is transitivers
$(x, y) \in R \wedge(y, f) \in R-(x, z) \in R$
$(x, y) \in R$ iff
$(\mathrm{y}, \mathrm{z}) \in \mathrm{R}$ 伊 $\mathrm{x}-\mathrm{z} \geq 0$
$x-z=x-y, z \leq 0$
then R is trat sitive
is irreflexive $\operatorname{iff}(x, x) \notin R$ for all x.
, $x) \in R$ for all $x \in A$
then: R is NOT irreflexive.
5. $\quad R$ is anti-symmetric $\operatorname{iff}(x, y) \in R \wedge(y, x) \in R$ but $x=y$
$(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \wedge(\mathrm{b}, \mathrm{c}) \in \mathrm{R} \rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$
$(x, y) \in R$ iff $x-y \geq 0$
$(y, x) \in R$ iff $y-x \geq 0$
$x-y \geq 0 \wedge y-x \geq 0$
then: $\mathrm{x}=\mathrm{y}$
R is anti-symmetric

Example:
Let $A=\{a, b, c\} \quad \mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\}$
$\left.\mathrm{a}+\begin{array}{ccc}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} \\ \mathrm{c} & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$

By General:

A relation R on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots \ldots \ldots . ., a_{n}\right\}$ can be represented by a matrix M_{R} of 0 's (zero's) and 1 's (one's), by letting the entry ($\mathrm{i}_{\text {th }}$) in the row and $\left(j_{t_{t}}\right)$ column equal 1 if $a_{i} R a_{j}$ and equal 0 if $a_{i} R a_{j}$

Example:

Let $\mathrm{A}=\{1,2,3,4,5\}$, and let
$R=\{(1,1),(2,2),(2,1),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2)$, $(4,1),(5,5),(5,4),(5,3),(5,2),(5,1)\}$
1
2
3
4
5 $\quad\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1\end{array}\right) \quad{ }_{\text {Remark: }}$

1. the relation R is reflexive iff the entries on the diameter are all 1 's (one's)
2. the relation P is treftextve iff the entries on the diameter are all 0 's (zero's)

Example:

Let $A=\{a, b, c, d$ and $R=\{(a, b),(b, d),(a, d),(d, a),(d, b),(b, a),(c, c)\}$

$$
\text { Then } M_{R}=\quad \begin{aligned}
& x R y=1 \\
& \\
& \\
& x R y=0
\end{aligned}
$$

Every $n \times n$ matrix defined a relation R_{M} an a set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots \ldots \ldots . ., a_{n}\right\}$ by $\mathrm{a}_{\mathrm{i}} \mathrm{R} \mathrm{a}_{\mathrm{j}}$ iff the entry in the row (i) and column (j) equal zero

Example:
$\left.\begin{array}{l}\mathrm{a}_{1} \\ \mathrm{a}_{2} \\ \mathrm{a}_{3}\end{array} \begin{array}{rrr}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ Let $\mathrm{M}=$

$$
\begin{aligned}
\text { Let } A= & \left\{a_{1}, a_{2}, a_{3}\right\} \\
& R_{M}=\left\{\left(a_{1}, a_{1}\right),\left(a_{1}, a_{3}\right),\left(a_{2}, a_{2}\right)\right\}
\end{aligned}
$$

