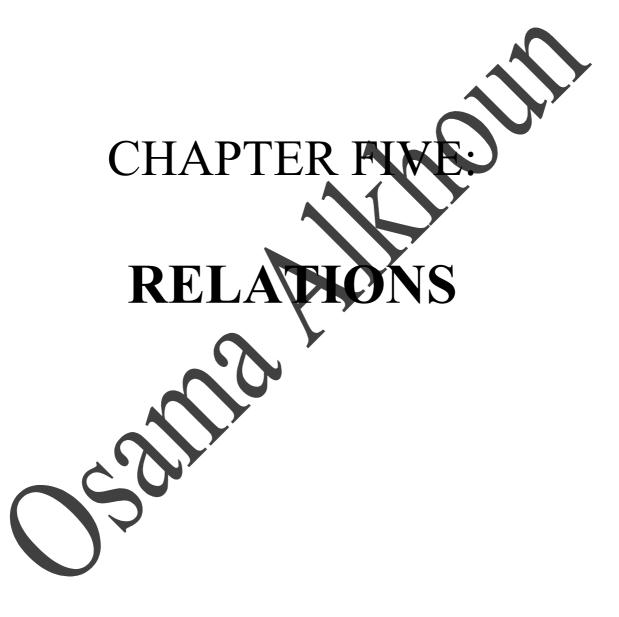
Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Seme*s*ter 2009/2010

Done by: Osama Alkhoun

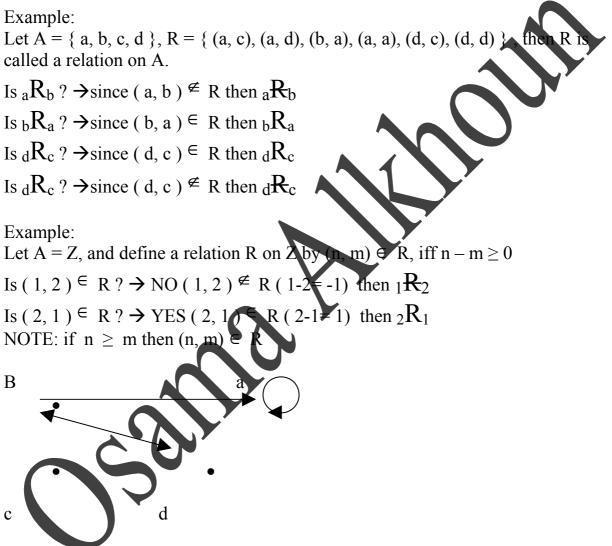


Math 152

SECTION 5.1: Relations.

Definition:

Let A be a set, a subset R of A × A is called **a relation** on A If pair $(x, y) \in R$, then we say that x related to y and write $_xR_y$ (x related y), otherwise we write $_xR_y$ (x NOT related y)



We can represent a relation on a finite set A with a diagram, this diagram is called a **directed graph** or **diagraph** each element in A is denoted by a **node** or **vertex** if $(s, t) \in R$, we connect s to t by an arrow is called **directed edge**. If $(s, s) \in R$, then the arrow from s to s (to itself) is called a **loop** or **self loop** Example: Let $S = \{ 1, 2, 3, 4, 5 \}$, and let $R = \{ (1, 1), (1, 2), (2, 3), (1, 3), (1, 4), (4, 5), (5, 1), (1, 5), (4, 1) \}$ draw a diagraph of R 2 Example: draw a diagraph of the following $A = \{a, b, c, d\}$, $R = \{ (a, a), (a, b), (b, a), (b, b), (c, b), (c, c) (b, c) \}$), (d, d), (a, d) } (d, С Example: Let $S = \{ 2, 3, 4, 6, 8, \}$ and let R be defined as ($y \in R$ iff x divides y (1, (2, 8), (2, 12), (3, 3), (3, 6), (3, 9), (3, 12), $R = \{ (2, 2), (2, 2), (2, 3) \}$ $2),(6, 6), (6, 12), (8, 8), (9, 9), (12, 12) \}$ (4, 4), (4, 8),draw a diagraph of б 8 9 3 2

Osama Alkhoun (Mobile: 0796484613)

Math 152

Remark: Every function of the form f: A \rightarrow A defines a relation R_f on A. By $(x, y) \in R_f \text{ iff } f(x) = y$ Example: Let $A = \{a, b, c\}$, and f: $A \rightarrow A$ is defined by f a. hc с $R_{f} = \{ (a, b), (b, a), (c, c) \}$ b а Question5: Draw a diagraph of the relation R_f defined by e function ollow f a а a b b b C С d d e e σ f f g g d Conversely: Let R be a relation on a set A, if exactly one out-going arrow from each node, then we can use R to define a function f_R on A as follows $f_R(a) = y$ iff $(a, y) \in R$

Example:

Let $A = \{a, b, c, d, e\}$, and let R be a relation defined diagraph $f_R : A \rightarrow A$ defined by: $f_R (a) = c$ $f_R (b) = b$ $f_R (c) = e$ $f_R (d) = a$ $f_R (e) = d$ Definition:

Suppose that R is a relation defined on A, then

a Relation (R) is **Reflexive** iff wherever ${}_{x}R_{x}$ for all $x \in A$. 1. if $(x, x) \in \mathbb{R}$, $\forall x \in A$, is called **Reflexive** a Relation (R) is Symmetric iff wherever ${}_{x}R_{y}$ we have ${}_{y}R_{x}$. 2. if $(x, y) \in R$, then $(y, x) \in R$, is called Symmetric a Relation (R) is **Transitive** iff wherever ${}_{x}R_{y}$ and ${}_{y}R_{z}$, we have 3. $_{x}R_{z}$. if $(x, y) \in R$, and $(y, z) \in R$, then $(x, z) \in R$ is called **Transiti** a Relation (R) is **Irr-Reflexive** iff wherever ${}_{x}\mathbf{R}_{x}$ for all 4. if $(x, x) \notin R$, $\forall x \in A$, is called Irr-Reflexive \mathbf{R}_{v} and $_{v}\mathbf{R}_{x}$, we have x a Relation (R) is Anti-Symmetric iff wherever 5. = v.if $(x, y) \in R$, and $(y, x) \in R$, then x - y is called Anti-Symmetric Properties of a relation $\mathbf{R} \subseteq \mathbf{A} \times \mathbf{A}$. 1. **Reflexive** if $\forall a \in A (a, a) \in R$ **Symmetric** if $\forall a \in A$ $\forall b \in A$, $(a, b) \in R \rightarrow (b, a) \in R$ 2. **Irr-Reflexive** if $\forall a \in A$ (a) $\notin \mathbb{R}$ 3. $\forall b \in A, (a, b) \in R \land (b, a) \in R \rightarrow a$ Anti-symmetric if $\forall a \in A$ 4

= b

Compare a relation **R** ⊆

5. **Transitive** if $\forall a, b, c \in A, (a, b) \in \mathbb{R} \land (b, c) \in \mathbb{R} \rightarrow (a, c) \in \mathbb{R}$

Range	Relation 1	Relation 2
	Reflexive	Irr-Reflexive
$\forall x \in A$	$_{x}\mathbf{R}_{x} \in \mathbf{A}$	_x R _x ∉ A
$\forall \mathbf{x} \in \mathbf{A}, \ \forall \mathbf{y} \in \mathbf{A}$	Symmetric	Anti-symmetric
	$_{x}R_{y} \in A, _{y}R_{x} \in A$	$xR_y \in A, yR_x \in A (x=y)$

Example:

Determine whether the following relations reflexive, symmetric, transitive, antisymmetric, irreflexive

 $A = \{ a, b, c, d \} \quad R = \{ (a, b), (b, d), (a, d), (d, a), (d, b), (b, a), (c, c) \}$

- 1. R is NOT reflexive ((a, a) \notin R)
- 2. R is symmetric

3. R is NOT transitive

 $(a, b) \in R \text{ and } (b, a) \in R \text{ but } (a, a) \notin R$

- 4. R is NOT Irr-reflexive $((c, c) \in R)$
- 5. R is NOT anti-symmetric

Example:

 $A = \{a, b, c, d, e\} R = \{(a, a), (a, b), (b, c), (a, c), (b, a), (c, a), (c, b), (d, e)\}$

- 1. R is NOT reflexive ($(b, b) \notin R$)
- 2. R is NOT symmetric $(d, e) \in R$ but $(e, d) \notin R$
- 3. R is NOT transitive
- $(b, c) \in R \text{ and } (c, b) \in R \text{ but } (b, b) \notin R$
- 4. R is NOT irreflexive $((a, a) \in R)$
- 5. R is NOT anti-symmetric $(a, b) \in R$ and $(b, a) \in R$ but $a \neq b$

Example:

A = { 1, 2, 3, 4, 5 } and define a relation R on A by $(x, y) \in \mathbb{R}$ if $x - y \ge 0$

1. R is reflexive iff $(x, x) \in R$ iff $x - x \ge 0$ $0 \ge 0$

then: R is reflexive

- 2. R is symmetric $(x, y) \in R$ and $(y, x) \in F$
- $x y \ge 0 \neq x y \ge 0$
- then: R is NOT symmetric
- 3. R is transitive iff (x, y) $\in \mathbb{R} \land (y, z) \in \mathbb{R} \to (x, z) \in \mathbb{R}$
- $(x, y) \in R$ iff $x y \ge 0$
- $(y, z) \in R$ iff $y z \ge 0$.
- $\mathbf{x} \mathbf{z} = \mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{z} \ge 0$

then: $(x, z) \in \mathbb{R}$ then: R is transitive

4. R is irreflexive iff $(x, x) \notin R$ for all x. since $(x, x) \in R$ for all $x \in A$ then: R is NOT irreflexive.

5. R is anti-symmetric iff $(x, y) \in R \land (y, x) \in R$ but x = y(a, b) $\in R \land (b, c) \in R \rightarrow (a, c) \in R$ (x, y) $\in R$ iff $x - y \ge 0$ (y, x) $\in R$ iff $y - x \ge 0$ $x - y \ge 0 \land y - x \ge 0$

Math 152

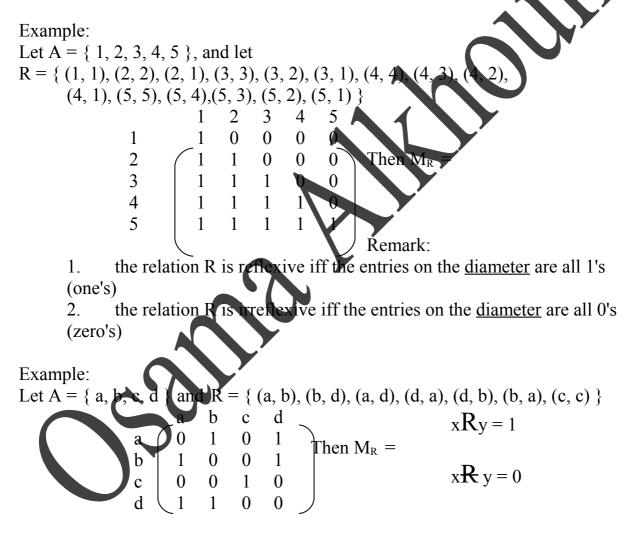
then: x = y R is anti-symmetric

osana hand

Example: $R = \{ (a, a), (a, b), (b, c) \}$ Let $A = \{a, b, c\}$ b С 1 0 a 0 0 b 1 0 0 c 0

By General:

A relation R on a finite set $A = \{a_1, a_2, a_3, a_4, \dots, a_n\}$ can be represented by a matrix M_R of 0's (zero's) and 1's (one's), by letting the entry (i_{th}) in the row and (j_{th}) column equal 1 if $a_i R a_j$ and equal 0 if $a_i R a_j$



Every $n \times n$ matrix defined a relation R_M an a set { $a_1, a_2, a_3, a_4, \ldots, a_n$ } by $a_i \mathbf{R} a_j$ iff the entry in the row (i) and column (j) equal zero

Example:

Osama Alkhoun (Mobile: 0796484613)

Math 152

Let A = {
$$a_1, a_2, a_3$$
 }
R_M = { $(a_1, a_1), (a_1, a_3), (a_2, a_2)$ }

