Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER FOL colvigability.

SECTION 4.2:

Functions and Counting.

Proposition:

Suppose that A and B are two nonempty finite sets and $|\boldsymbol{A}|=\mathrm{m},|B|=\mathrm{n}$, there are n^{m} function possible from A to B

Example:

Let $A=\{a, b, c\} B=\{s, t\}$
There are 2^{3} function from A to B and There are 3^{2} function from B to 1

- if $|\boldsymbol{A}|>|\boldsymbol{B}|$, there is no $1-1$ function from A to B

Example:
Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \quad \mathrm{B}=\{\mathrm{s}, \mathrm{t}\}$
How many injective from A to B ? $=\mathrm{A}>\mathrm{B} \rightarrow 0$ (zeo)
How many injective from B to A ? $=3 \times 1 \times 61$

- if $|A|=\mathrm{m},|B|=\mathrm{n}, \mathrm{n} \geq \mathrm{m}(|B|>|A|)$, then there are $\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{m})!}$ injective (1-1) function possible from A to B

Example:

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
How many injective from $B+d \quad A \geqslant 0$ (zero)
How many injective fr $\mathrm{m} \mathbf{A}$ to B ? $=|A|=\mathbf{m}=\mathbf{3},|\boldsymbol{B}|=\mathbf{n}=\mathbf{5}$

$$
=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{m})!}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=60
$$

Corollary:
Suppose tha A is a nompty finite set with $|A|=n$, then there are n ! different inj ctive functions ossible from A to A (from A to itself)

Proposition:

Suppose that $|A|>|B|$, and that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a function then there are exist $(\mathrm{s}, \mathrm{t} \in \mathrm{A})$ with $\mathrm{f}(\mathrm{s})=\mathrm{f}(\mathrm{t})$

Definition:
Let A be a nonempty set a bijection $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is called a permutation Note:

$$
\mathrm{f}: \mathrm{A} \rightarrow \mathrm{~A} \text { (if we can } 1-1 \text { then onto and via versa) }
$$

Example:

Let $\mathrm{A}=\{1,2,3\}$ and define $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ by

There are 3! A way for arrangement A
Remark:
If $|\boldsymbol{A}|=\mathrm{n}$, there are n ! permutation.

Example:

In how many ways we can arrange the letters of wopd MATR
There are 4! Way to arrange them
Note:

If there is repetition of the word, the division number of repetition for each element on both.

Example;

In how many ways we can arrange the letters of word MISTER?
There are 6 ! Ways to arrange the petter word mister.

Example;

In how many ways we can atrange the letters of word MISSISSIPPI?
There are $\frac{11!}{4!4!26}$ yays toarrange the letter word Mississippi.

Example;

In how many was we can arrange the letters of word PASCAL?
There are $\frac{6!}{2!}$ Ways to arrange the letter word Pascal.

Example;

In how many ways we can arrange the letters of word LETTERS?
There are $\frac{7!}{2!2!}$ Ways to arrange the letter word Letters.

Example;

How many ways to arrangement a sequence of 6 identical white balls and 5 identical red balls.
There are $\frac{11!}{5!6!}$ Ways to arrange them.
Question 5 / page 145
In how many ways can we assign a number between 1 to 100 to each of 50 people?

1. if each people must be assigned a different number? with repeat number $=100^{50}$
2. if no two numbers can have a difference of 1and each people yust assigned a different number?
the number $=\frac{100!}{(100-50)!}$

