Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER FOL colvigability.

SECTION 4.1:

Counting Principles.

Definition:

Let A be a nonempty finite set. Let n be a positive integer, then cardinality $(\mathrm{A})=|A|=\mathrm{n}$ iff there is a bijection from A to the set $\mathrm{X}_{\mathrm{n}}=\{1,2, ., \mathrm{n}\}$, the cardinality of the empty set is zero (0).

Example:

Let $A=\{a, b, c\}$

$$
\mathrm{B}=\{\{1\},\{1,2\}\} \quad \mathrm{C}=\boldsymbol{\Phi}
$$

1. $|A|=3$
let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{X}_{3}=\{1,2,3\}$ be a function defined by
 this function 1-1 and onto (bifection
2. $|B|=2$
let $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{X}_{2}=\{1,2\}$ be a function defined x

Proposition:

Let A and B be two nonempty finite sets, then $|A|=|B|$ iff there a bijection function form A to B .

Theorem:
The addition prineiples
Let A and B be two finite ϕ risjoint sets, $|\boldsymbol{A}|=\mathrm{n},|B|=\mathrm{m}$ then
$|A \square B|=|A \subset| B \quad=\mathrm{Ir}+\mathrm{m}$
Example:
Let $A=\{1,2,3\} \quad B=\{3,4,5\}$
$|A|=\mathbf{3} \quad B \mid=3$
$A \square B=\{1,2,3,4,5\}$
Then $|A \square B|=5$
$|A \square B| \neq|A|+|B| \neq A \cap B=\boldsymbol{\Phi}$

Definition:

Let $A_{1}, A_{2}, A_{3}, \ldots . . A_{n}$ be a collection of sets, then if $\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}=\boldsymbol{\Phi}$, for all $\mathrm{i} \neq \mathrm{j}$, then this collection called mutually disjoint .

Corollary:
If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, A_{n} is mutually disjoint collection of sets, then.
| $A 1 \mathrm{D}$ A2口. \qquad $\square \boldsymbol{A n}|=|\boldsymbol{A 1}|+|A 2|+$ \qquad $+|A n|$

Theorem:
If A a finite set, $|\boldsymbol{A}|=\mathrm{n}$ then $|P(A)|=2^{\mathrm{n}}$
Proposition:
Suppose that A is a subset of a finite universal set U , then $\left|\boldsymbol{A}^{c}\right|=|\boldsymbol{U}|-|\boldsymbol{A}|$

Example:

Let $\mathrm{U}=\{1,2,3,4,5,6\}$

$$
\begin{aligned}
& \left|\boldsymbol{A}^{c}\right|=|U|-|A| \\
& =6-3 \\
& =\mathbf{3}
\end{aligned}
$$

Theorem:
Suppose that A and B are two (mite sets, then $|A / B|=|A|-|A \cap B|$

Example:

Find the number of integer between 1 and 10 that are divisible by $3,4,6$.
Solution:
Suppose $A=\mathbb{N}, 2, \mathbf{3}, \mathbf{4}, \mathbf{5}, 6,7,8,9,10\}$
The ofernents divisible by $3=\{3,6,9\}=3$
The \# of elements civisible by $4=\{4,8\}=2$
The $\#$ of elements divisible by $6=\{6\}=1$
Clarification:
$10=\mathbf{3}+\mathbf{3}+\mathbf{3}+1$
$10=\mathbf{4}+\mathbf{4}+2$
$10=6+4$
Other solution:
$\left[\frac{10}{3}\right]=3 \quad\left[\frac{10}{4}\right]=2 \quad\left[\frac{10}{6}\right]=1$
Example:

Find the number of integer between 1 and 100 that are not divisible by 3 .
Solution:
The \# of elements divisible by $3=\left[\frac{100}{3}\right]=33$
Let A be the set integers divisible by 3

$$
\begin{aligned}
\left|\boldsymbol{A}^{c}\right| & \quad=|\boldsymbol{U}|-|\boldsymbol{A}| \\
= & 100-33 \\
= & 67
\end{aligned}
$$

Example:

Find the number of integer between 1 and 100 that are divisible by 3 sut n divisible by 5 .

Solution:

Numbers that are divisible by 3 and 5 is the number 15 (the first number * second number)
The \# of elements divisible by $15=1$
The \# of elements divisible by $\left.3=\left\lvert\, A \quad-\frac{100}{3}\right.\right]$
The \# of elements divisible by 3 and not divisible by 5

The inclusion and Exclusion Principle
Theorem:
Suppose that A and B are two finite sets then

```
|A\squareB| = |A| + |B| - |A\capB|
```


Example:

Let $|A|=100,|B|=150,|A \square B|=200$, Find $|A \cap B|$
$|A \square B|=|A|+|B|-|A \cap B|$
$200=100+150-|A \cap B|$
$200=250-|A \cap B|$
$|A \cap B|=50$
Theorem:
Suppose that A, B and C are three finite sets then $|A \square B \square C|=|A|+|B|+|C|-|A \cap B|-\mid A \cap C$

Corollary:
$\mid A_{1}{ }^{\square} A_{2}{ }^{\square}$ \qquad $\square_{A_{n}}\left|=\left|A_{1}\right|+\left|\boldsymbol{A}^{+}+\longrightarrow\right| \boldsymbol{A}_{n}\right|-\left|A_{1} \cap A_{2}\right|-$ $\left|A_{n-1} \cap A_{n}\right|$

$$
+\left|A_{1} \cap A_{2} \cdot A_{3}\right| \forall(-1)^{n+1}\left|A_{1} \cap A_{2} \cap A_{n}\right|
$$

OR

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum^{n} \mid\left(y_{n} \cap A_{j}\left|+\cdots+(-1)^{n-1}\right| A_{1} \cap A_{2} \cap \cdots \cap A_{n} \mid\right.
$$

Example:

Determine homandy metween 1 and 1235 are divisible by 2 or 3

Solution:

Le
$\mathrm{A}=$ the set of all integers between 1 and 1235 are divisible by 2
$\mathrm{B}=$ the set of all integers between 1 and 1235 are divisible by 3

$$
\begin{aligned}
& |A|=\left[\frac{1235}{2}\right]=617 \quad|B|=\left[\frac{1235}{3}\right]=411 \\
& |A \cap B|=\left[\frac{1235}{2 \times 3}\right]=205 \\
& |A \square B|=|A|+|B|-|A \cap B| \\
& \\
& \quad=617+411-205 \\
& \quad=823
\end{aligned}
$$

Example:

Find the numbers of integers between 1 and 1000 that are divisible by 2,3 and 5

Solution:
Let:
$\mathrm{A}=$ the set of all integers between 1 and 1000 are divisible by 2
$B=$ the set of all integers between 1 and 1000 are divisible by 3
$\mathrm{C}=$ the set of all integers between 1 and 1000 are divisible by 5

$$
\begin{aligned}
& |A|=\left[\frac{1000}{2}\right]=500 \\
& |B|=\left[\frac{1000}{3}\right]=333 \\
& |C|=\left[\frac{1000}{5}\right]=200 \\
& |A \cap B|=\left[\frac{1000}{2 \times 3}\right]=166 \\
& |A \cap C|=\left[\frac{1000}{2 \times 5}\right]=100 \\
& \begin{aligned}
|B \cap C|=\left[\frac{1000}{3 \times 5}\right]=66
\end{aligned} \\
& \begin{aligned}
|A \cap B \cap C| & =\left[\frac{1000}{2 \times 3 \times 5}\right]=33 \\
|A \square B \square C| & =|A|+|B|+|C|-|A \cap B|-\mid A \\
& =500+333+200-166 \mid \\
& =846
\end{aligned}
\end{aligned}
$$

The multiplication Principle Theorem:
Suppose that $|A|=\mathrm{n},|B|=\mathrm{m}$, then $|A>B|=\mathrm{n} \times \mathrm{m}$
In general:

$A_{1} \times A_{2} \times A_{3}$

$\left|A_{1}\right| \times\left|A_{2}\right| \times\left|A_{0} \ggg>\cdots \cdots \ldots \ldots . . \times\left|A_{n}\right|\right.$

Ex mple:

How many six plaee licenses plate are possible if the first three places must be letters and the next three are digit.
Sol:
$=26 \times 25 \times 24 \times 10 \times 9 \times 8$
$=11232000$

Example:

A code word containing 0 and 1 only can be of length 3,4 or 5
How many such code word are possible
A: 2^{3}
B: 2^{4}
C: 2^{5}
We sets are disjoint then

$$
\begin{aligned}
|A \square B \square C| & =|A|+|B|+\mid C \\
& =2^{3}+2^{4}+2^{5} \\
& =8+16+32 \\
& =56
\end{aligned}
$$

Example:

Determine how many words of length 7 can be formed format the set of letters $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ if the first letter is a OR the last letter is b .

Solution:

A: the set word with first letter is a
B: the set word with first letter is b

$$
\begin{aligned}
&|A|= \times 5^{6} \\
&|\boldsymbol{B}|=5^{6} \times 1 \\
&|A \cap B|=1 \times 5^{5} \times 1 \\
&|A \square B|=|\boldsymbol{A}|+|\boldsymbol{B}|-|A \cap B| \\
&=5^{6}+5^{6}-5^{5} \\
&=15625+15625-312 \\
&=28125
\end{aligned}
$$

Question 12 / page 141

How many integers between 999 and 9999 either begin or end 3
Solution:
Let A: the set of integers between 999 and 9999 begin with 3
Le B : the set of integers between 999 and 9999 ends with 3
$\mid A=1 \times 10^{3} \quad$ (begin with $\left.3 \rightarrow 9: 1,9: 10,9: 10,9: 10\right)$
$|B|=9 \times 10 \times 10 \times 1$ (end with $3 \rightarrow 9: 9,9: 10,9: 10,9: 1)$
$|A \cap B|=10^{2} \times 1 \quad$ (begin and end with $3 \rightarrow 9: 1,9: 10,9: 10,9: 1$)
$|A \square B|=|A|+|B|-|A \cap B|$

$$
=10^{3}+900-100
$$

$$
=1000+900-100
$$

$$
=1800
$$

