Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Seme*s*ter 2009/2010

Done by: Osama Alkhoun

SECTION 4.1: **Counting Principles.**

Definition:

Let A be a nonempty finite set. Let n be a positive integer, then cardinality (A) = |A| = n iff there is a bijection from A to the set $X_n = \{1, 2, ., n\}$, the cardinality of the empty set is zero (0).

Example:
Let
$$A = \{a, b, c\}$$
 $B = \{\{1\}, \{1, 2\}\}$ $C = \Phi$
1. $|A| = 3$
let f: $A \rightarrow X_3 = \{1, 2, 3\}$ be a function defined by
f
a 1
b 2
let f: $A \rightarrow X_3 = \{1, 2, 3\}$ be a function defined by
f
a 1
b 2
let g: $B \rightarrow X_2 = \{1, 2\}$ be a function defined by
 $\{1\}$ \downarrow 1
 $\{1, 2\}$ \downarrow 2 this function 1-1 and onto (bijection)
Proposition:
Let A and B be two nonempty finite sets, then $|A| = |B|$ iff there a bijection
function form A to B.
Theorem:
The addition principles
Let A and B be two nonempty finite sets, then $|A| = |B|$ iff there a bijection
function form A to B.
Theorem:
The addition principles
Let A and B be two nonite disjoint sets, $|A| = n$, $|B| = m$ then
 $|A \cap B| = |A| + |B| = |n+m$
Example:
Let $n = \{1, 2, 3\}$ $B = \{3, 4, 5\}$
 $|A| = 1$ $|B| = [A \cap B] = 5$
 $|A \cap B| = [A \cap A] = 5$
 $|A \cap B| = [A \cap A] = 5$

Definition:

Let $A_1, A_2, A_3, \dots, A_n$ be a collection of sets, then if $A_i \cap A_j = \Phi$, for all $i \neq j$, then this collection called **mutually disjoint**.

Corollary:

If $A_1, A_2, A_3, \dots, A_n$ is mutually disjoint collection of sets, then. $|A_1 \square A_2 \square \dots \square A_n| = |A_1| + |A_2| + \dots + |A_n|$

Theorem:

If A a finite set, |A| = n then $|P(A)| = 2^n$

Proposition:

Suppose that A is a subset of a finite universal set U, then $\left|\mathcal{A}^{c}\right| = |\mathcal{U}| - |\mathcal{A}|$

Example:

Let $U = \{ 1, 2, 3, 4, 5, 6 \}$ $A = \{ 2, 4 | A^{c} | = |U| - |A| |$ = 6 - 3 = 3

Theorem:

Suppose that A and B are two finite sets, then $|A/B| = |A| - |A \cap B|$

Example:

Find the number of integer between 1 and 10 that are divisible by 3, 4, 6. Solution: Suppose A = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ The # of elements divisible by 3 = $\{3, 6, 9\}$ = 3 The # of elements divisible by 4 = $\{4, 8\}$ = 2

The # of elements divisible by $6 = \{6\} = 1$

Clarification: 10 = 3 + 3 + 3 + 1 10 = 4 + 4 + 2 10 = 6 + 4Other solution: $\left[\frac{10}{3}\right] = 3$ $\left[\frac{10}{4}\right] = 2$ $\left[\frac{10}{6}\right] = 1$

Example:

Math 152

Find the number of integer between 1 and 100 that are not divisible by 3.

Solution:

The # of elements divisible by $3 = \left[\frac{100}{3}\right] = 33$ Let A be the set integers divisible by 3 $\left|\mathcal{A}^{c}\right| = |\mathcal{U}| - |\mathcal{A}|$ = 100 - 33= 67Example:

Find the number of integer between 1 and 100 that are divisible by 3 but not divisible by 5.

100

Solution:

Numbers that are divisible by 3 and 5 is the number 1 (the first number * second number)

The # of elements divisible by $15 = |A \cap B|$

The # of elements divisible by 3 = |A|

The # of elements divisible by 3 and not divisible by 5 $|A/B| = |A| - |A \cap B|$ $= \left[\frac{100}{3}\right] - \left[\frac{100}{15}\right]$ = 33 - 6 = 27

The inclusion and Exclusion Principle Theorem: Suppose that A and B are two finite sets then $|A \square B| = |A| + |B| - |A \cap B|$ Example: Let |A| = 100, |B| = 150, $|A \square B| = 200$, Find $|A \cap B|$ $|A \square B| = |A| + |B| - |A \cap B|$ $= 100 + 150 - |A \cap B|$ 200 200 = $250 - |A \cap B|$ $|A \cap B| = 50$ Theorem: Suppose that A, B and C are three finite sets then $|A \square B \square C| = |A| + |B| + |C| - |A \cap B| - |A \cap C|$ $\cap C$ Corollary: $|A_1 \square A_2 \square \dots \square A_n| = |A_1|$ A_n - $A_1 \cap A_2$ - $|A_{n-1} \cap A_n|$ $A_3 (-1)^{n+1} | A_1 \cap A_2 \cap A_n |$ $A_1 \cap A_2$ OR $|A_j| + \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|$ $|A_1 \cup A_2 \cup \cdots \cup A_n| =$ Example: Determine how many integers between 1 and 1235 are divisible by 2 or 3 Solution: Let A = the set of all integers between 1 and 1235 are divisible by 2 B = the set of all integers between 1 and 1235 are divisible by 3 - = 617 $|B| = \left[\frac{1235}{3}\right] = 411$ |A| = |- $|A \cap B| = \left[\frac{1235}{2 \times 3}\right] = 205$ $|A \square B| = |A| + |B| - |A \cap B|$ = 617 + 411 - 205= 823

Example:

Find the numbers of integers between 1 and 1000 that are divisible by 2,3 and 5

Math 152

Solution:

Let: A = the set of all integers between 1 and 1000 are divisible by 2 B = the set of all integers between 1 and 1000 are divisible by 3 C = the set of all integers between 1 and 1000 are divisible by 5 $|\mathcal{A}| = \left\lceil \frac{1000}{2} \right\rceil = 500$ $|B| = \left\lceil \frac{1000}{3} \right\rceil = 333$ $|C| = \left[\frac{1000}{5}\right] = 200$ $|A \cap B| = \left\lceil \frac{1000}{2 \times 3} \right\rceil = 166$ $|A \cap C| = \left\lceil \frac{1000}{2 \times 5} \right\rceil = 100$ $|B \cap C| = \left[\frac{1000}{3 \times 5}\right] = 66$ $|A \cap B \cap C| = \left\lceil \frac{1000}{2 \times 3 \times 5} \right\rceil = 33$ $|+|A \cap B \cap C|$ $|A \square B \square C| = |A| + |B| + |C| - |A \cap B| - |A|$ = 500+ 333 + 200 - 166100 66 = 846The multiplication Principle Theorem: Suppose that |A| = n, |B| = m, $|A \gg B| = n \times m$ In general: $A_1 \times A_2 \times A_3 \dots$ $|A_1| \times |A_2| \times |A_1|$ $\dots \times |A_n|$ Example x place licenses plate are possible if the first three places must be How many letters and the next three are digit. Sol:

 $= 26 \times 25 \times 24 \times 10 \times 9 \times 8$ = 11232000

Math 152

Example:

A code word containing 0 and 1 only can be of length 3, 4 or 5 How many such code word are possible A: 2^{3} B: 2⁴ $C: 2^{5}$ We sets are disjoint then $|A \square B \square C| = |A| + |B| + |C|$ $= 2^3 + 2^4 + 2^5$ = 8 + 16 + 32= 56 Example: Determine how many words of length 7 can be formed formated tters { a, b, c, d, e } if the first letter is a OR the last letter is b. Solution: A: the set word with first letter is a B: the set word with first letter is b $|A| = 1 \times 5^{6}$ $|B| = 5^6 \times 1$ $|A \cap B| = 1 \times 5^5 \times 1$ $|A \square B| = |A| + |B| - |A \cap B|$ $=5^{6}+5^{6}-5^{5}$ = 15625 + 15625 - 312= 28125Question 12 / page 141 How many integers between 999 and 9999 either begin or end 3 Solution: Let A: the set of integers between 999 and 9999 begin with 3 Let B: the set of integers between 999 and 9999 ends with 3 $= 1 \times 10^3$ (begin with 3 \rightarrow 9:1, 9:10, 9:10, 9:10) |A| $9 \times 10 \times 10 \times 1$ (end with $3 \rightarrow 9:9, 9:10, 9:10, 9:1$) |B| $|A \cap B| = 1 \times 10^2 \times 1$ (begin and end with $3 \rightarrow 9:1, 9:10, 9:10, 9:1$) $|A \square B| = |A| + |B| - |A \cap B|$ $= 10^3 + 900 - 100$ = 1000 + 900 - 100= 1800