Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER THRE:
 FUNCIIONS.

SECTION 3.5:

Functions and Set Operations.
Definitions:
Let f: A \rightarrow B be a function and let \mathbf{S} be a subset of \mathbf{A} and \mathbf{T} be a subset of \mathbf{B} $(S \subseteq A, T \subseteq B)$, then $f(S)=\{y: y \in B$ and $y=f(x): x \in S\}$ is called the direct image of S under f and $f^{-1}(T)=\{x: f(x) \in T\}$ is called the inverse image of T under f

Example:

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\} \quad \mathrm{B}=\{\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}\}$ and
Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be defined by

let $\mathrm{S}=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\} \subseteq \mathrm{A}$

- $\quad f(S)=\{f(x): x \in S\}$

$$
=\{\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{c}), \mathrm{f}(\mathrm{~d})\}
$$

$$
=\{\mathrm{t}, \mathrm{u}\}
$$

- $\quad \mathrm{f}^{-1}(\mathrm{~T})=\{\mathrm{x} \in \mathrm{A}(\mathrm{f}(\mathrm{x}) \in \mathrm{T}\}$

$$
\begin{aligned}
& =\{a, c, b, e \\
D & =\{a, b\} \rightarrow f(\mathbb{C})=\{v\} \\
C & =\{s, v \rightarrow(C)=\{b, e\}
\end{aligned}
$$

Example:
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ (s) given bvif $(\mathrm{x})=2 \mathrm{x}+1$
Let $\beta=1 ;-2 \leq x, 2\} \quad T=\{x: 0 \leq x \leq 2\}$
Find $f(S), R(\mathbb{T})$
Solution:
$f(S)=\{f(x) . x \in S\}$
$=\{\mathrm{f}(\mathrm{x}):-2 \leq \mathrm{x} \leq 2\}$
then $=\{\mathrm{f}(\mathrm{x}):-3 \leq \mathrm{x} \leq 5\}$
$\mathrm{f}^{-1}(\mathrm{~T})=\{\mathrm{x}: \mathrm{f}(\mathrm{x}) \in \mathrm{T}\}$
$=\{\mathrm{x}: 0 \leq \mathrm{f}(\mathrm{x}) \leq 2\}$
$=\{\mathrm{x}: 0 \leq 2 \mathrm{x}+1 \leq 2\}$
$=\{\mathrm{x}:-1 \leq 2 \mathrm{x} \leq 1\}$
$=\left\{x:-\frac{1}{2} \leq x \leq \frac{1}{2}\right\}$

Example:

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
Let $\mathrm{A}=\{\mathrm{x}:-1 \leq \mathrm{x} \leq 3\}$
Find:
i. $\quad f(A)$
ii. $\quad f^{-1}(A)$
iii. $\quad f(R)$
iv. $\quad f^{-1}(\mathrm{R})$
v. $\quad f^{-1}(f(A))$
vi. $\quad f(\{4\})$

Solution:
i. $\quad f(A)=\{f(x): x \in A\}$

$$
=\{f(x):-1 \leq x \leq 3\}
$$

$$
=\{x: 0 \leq x \leq 9\}
$$

ii. $\quad f^{-1}(A)=\{x \in R: f(x) \in A$

$$
=\{x \in R:-1 \leq f(x) \leq 3
$$

$$
=\left\{x \in R:-1 \leq x^{2} \leq 3\right\}
$$

$$
=\{x \in R:-1 \leq|x| \leq \sqrt{3}
$$

$$
=\{x \in R:-\sqrt{3} \leq|x|\}
$$

iii. $\quad f(R)=\{f(x): x \in R\}$

$$
=\left\{x^{2}: x \in R\right\}
$$

$$
=\{[0, \infty)=\mathrm{R}\}
$$

iv. $\quad f^{-1}(R)=\{\in \in(x) \in R\}$
v. $\quad f^{-1}(\mathbb{A})=f^{-1}(\{x: 0 \leq x \leq 9\})$

$$
f(4\} 16\}
$$

vii.

Renakk

If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a function, then $\mathrm{f}(\mathrm{A})=\mathrm{B}$ iff f is surjective.

Example:

Let $f: R \rightarrow R$ be defined by $f(x)=\frac{2 x-1}{3}$, find f^{-1} if possible.
$A=\{x \in R: 0 \leq x \leq 2\}$

$$
\begin{aligned}
\mathrm{B} & =\{\mathrm{x} \in \mathrm{R}: \quad 1 \leq \mathrm{x} \leq 3\} \\
\mathrm{f}^{1}(\mathrm{~B}) & =\left\{\mathrm{x} \in \mathrm{R}: \frac{1}{3} \leq \mathrm{x} \leq \frac{5}{3}\right\}
\end{aligned}
$$

$\mathrm{f}^{11}(\mathrm{~A})=\left\{\mathrm{x} \in \mathrm{R}: \frac{-1}{3} \leq \mathrm{x} \leq 1\right\}$

Theorem:
Suppose that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a function and H, K two sets of A , then $\mathrm{f}(\mathrm{H} \square \mathrm{K})=\mathrm{f}(\mathrm{H}) \square \mathrm{f}(\mathrm{K})$

Proof:

Let y be an element of $f(H \quad \mathrm{~K})$
We can find an element x in ($H \quad K$) such that $f(x)=y$ because $x \in H$ or K And $y \in f(H)$ or $f(K)$, and we have shown that $f(H \square K) \subset f(H) \square f(K)$

Example:

Let $A=\{a, b, c, d, e\} \quad B=\{s, t, u, v\}$ and define $f: A \rightarrow B$ by f

let $\mathrm{H}=\{\mathrm{a}\}$
$K=\{b, d\}$

- $\quad f(H)=\{t\}$
- $\quad \mathrm{f}(\mathrm{K})=\{\mathrm{v}, \mathrm{u}\}$
- $\quad H^{\square} K=\{a, b, d\}$
- $\quad \mathrm{f}\left(\mathrm{H}^{\mathrm{D}} \mathrm{K}\right)=\{\mathrm{t}, \mathrm{v}, \mathrm{u}\}$
- $\quad \mathrm{D}^{\mathrm{c}}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}\}$
- $\quad \mathrm{f}\left(\mathrm{D}^{\mathrm{c}}\right)=\{\mathrm{t}, \mathrm{v}, \mathrm{u}$
- $\quad f(D)=\{t\}$
- $\quad f(H)=\{4$

In general, it is not true that:

1. $f(S \cap T)=f(S) \cap f(T)$
2. $f\left(S^{c}\right)=(f(S))^{c}$
then:

- $\quad \mathrm{f}(\mathrm{S} \cap \mathrm{T}) \neq \mathrm{f}(\mathrm{S}) \cap \mathrm{f}(\mathrm{T})$
- $\quad \mathrm{f}\left(\mathrm{S}^{\mathrm{c}}\right) \neq(\mathrm{f}(\mathrm{S}))^{\mathrm{c}}$
then the distribution be to the Union (\square), and not true to the Intersection (\cap) and complement.

Theorem:
Suppose that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a function and S, T two subsets of B , then

$$
\begin{array}{ll}
\text { 1. } & \mathrm{f}^{-1}(\mathrm{~S} Q \mathrm{~T})=\mathrm{f}^{-1}(\mathrm{~S}) \square \mathrm{f}^{-1}(\mathrm{~T}) \\
\text { 2. } & \mathrm{f}^{-1}(\mathrm{~S} \cap \mathrm{~T})=\mathrm{f}^{-1}(\mathrm{~S}) \cap \mathrm{f}^{-1}(\mathrm{~T}) \\
\text { 3. } & \mathrm{f}^{-1}\left(\mathrm{~S}^{\mathrm{c}}\right)=\left(\mathrm{f}^{-1}(\mathrm{~S})\right)^{\mathrm{c}}
\end{array}
$$

Example:
Let $A=\{a, b, c, d, e\} \quad B=\{s, t, u, v\}$ and define $f: A \rightarrow B$ by f

let $S=\{v\}$
$\mathrm{T}=\{\mathrm{t}, \mathrm{u}\}$
Find:

$$
\text { 1. } \mathrm{f}^{-1}(\mathrm{~S} \square \mathrm{~T})
$$

2. $f^{-1}(S \cap T)$
3. $f^{-1}\left(\mathrm{~S}^{\mathrm{c}}\right)$
4. $f^{-1}(S \square T)=f^{-1}(S) \square f^{-1}(T)$ $=\{b\} \square\{a, d\}$ $=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$
5. $\left.\begin{array}{rl}\mathrm{f}^{-1}(\mathrm{~S} \cap \mathrm{~T}) & =\mathrm{f}^{-1}(\operatorname{Sen} \mathrm{f} \\ =\{\mathrm{f}\}\end{array} \mathrm{T}, \mathrm{a}\right)$ $=\{b\}$
$=\Phi$
6. $\mathrm{f}^{-1}\left(\mathrm{~S}^{\mathrm{c}}\right) \underset{\mathrm{Cb}}{ }=\left(\mathrm{C} \mathrm{S}^{-1}(8)\right)^{\mathrm{c}}$
key concepts
SECTION 3.1: Functions.
7. function
8. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
9. A : Domain
10. B: CoDomain
11. function value $y=f(x)$ for $x \in A$ and $y \in B$
12. identity function id_{A}
13. inductively defined function
14. recurrence relation
15. recursively defined function

SECTION 3.2: Injective and surjective functions.

1. injective function (one - to - one)
2. surjective function (onto)
3. bijective function (one-to-one cerrespondence)

SECTION 3.3: Composition of functions.

1. composition g
2. $\quad f^{\mathrm{n}}, \mathrm{f}$ composed with itself n tim

SECTION 3.4: Inverse functions.

1. f^{-1}, the inverse of f
a. $\mathrm{f}^{-1} \circ \mathrm{f}=\mathrm{id}$
b. $\mathrm{f} \circ \mathrm{f}^{1}$

SECTION 3.5 A functions and Set Operations.

1. $f(S)$, the direct inage of the set $S \subset A: f(S) \subset B$
2. $f^{1}(Q)$, the inverse image of the set $Q \subset B: f(Q) \subset A$

