Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER THRE:
 FUNCIIONS.

SECTION 3.4:

Inverse functions.

The inverse of a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is the relation define a bijection relation $\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$ is the relation given by
$\mathrm{f}^{-1}(\mathrm{x})=\mathrm{y} \leftrightarrow \mathrm{f}(\mathrm{y})=\mathrm{x}$.
Clarification:
Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \quad \mathrm{A}\}=\{\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}\}$
I want to find a function g such that $g \circ f(x)=x$
$\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}=$

if $x \in A, y \in B f(x)=y \rightarrow g(y)=$ then
this function is called the inverse function
Definitions:
Suppose that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is bijection we define the function $\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$, called the inverse function (f) by the fonlowing rule:
if $z \in B$, then $f^{-1}(z)=x, \operatorname{ff}(x)=\{$

Example:

not function

not inverse function

Proposition:
Suppose that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijection (bijective) $\mathrm{f}^{-1}=B \rightarrow A$ is its inverse, then

1. for all $x \in A$, we have $f^{-1} \circ f(x)=x$
2. for all $x \in B$, we have $f \circ f^{-1}(x)=x$

Proof:

1. for all $x \in A$, we have $f^{-1} \circ f(x)=x$
$\mathrm{f}^{-1} \circ \mathrm{f}(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in \mathrm{A} \mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
let $f(x)=z \in B$
$\mathrm{f}^{-1}(\mathrm{z})=\mathrm{x}$
$\mathrm{f}^{-1} \circ \mathrm{f}(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{f}^{-1}(\mathrm{z})=\mathrm{x}$
2. $\mathrm{f}^{-1}(\mathrm{x})=\mathrm{x} \quad \forall \mathrm{x} \in \mathrm{B}$
$\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$
$\operatorname{let} f^{-1}(x)=z \in B$
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \quad \mathrm{f}(\mathrm{z})=\mathrm{x}$
$\mathrm{f} \circ \mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=\mathrm{f}(\mathrm{z})=\mathrm{x}$
NOTE:
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$, that is to say
3. $\mathrm{f} \circ \mathrm{f}^{-1}=\mathrm{id}_{\mathrm{B}}$
4. $\mathrm{f}^{-1} \circ \mathrm{f}=\mathrm{id}_{\mathrm{A}}$

Example:

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-1$, find f^{-1} if possible.
Solution:

1. the functionis bijection
2. $\mathrm{f}^{-1}: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $\mathrm{f}^{-1}(\mathrm{y})=\frac{\mathrm{y}+1}{3}$
let $\mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}$, then $\mathrm{t}(\mathrm{x})=\mathrm{y} \quad 3 \mathrm{x}-1=\mathrm{y}$

Example:

let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$, find f^{-1} if possible.
Solution:
This function is not $1-1$
$\mathrm{x}=0.1$
$y=0.3$
then $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})=0$
So, the function f has no inverse.

Example:

Let $\mathrm{h}: \mathrm{E} \rightarrow \mathrm{Z}$, where \mathbf{E} is the set of all even integer be defined by $\mathrm{h}(\mathrm{x})=\frac{\mathrm{x}}{2}$, find f^{-1} if possible.
Solution:

1. the function is injective
let $\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})($ want $\mathrm{x}=\mathrm{y})$
$\frac{x}{2}=\frac{y}{2}$
$\mathrm{x}=\mathrm{y}$
2. the function is surjective
let $\mathrm{y} \in \mathrm{Z}$ (want $\exists \mathrm{x} \in \mathrm{E}: \mathrm{h}(\mathrm{x})=\mathrm{y})$
let $\mathrm{h}(\mathrm{x})=\mathrm{y}$

$$
\begin{gathered}
\frac{x}{2}=y \\
x=2 y
\end{gathered}
$$

let $x=2 y \in E$, then $h(x)=y$
let $\mathrm{h}^{-1}(\mathrm{y})=\mathrm{x}$, then $\mathrm{h}(\mathrm{x})=\mathrm{y}$

$$
\begin{aligned}
& \frac{x}{2}=y \\
& x=2 y
\end{aligned}
$$

then h^{-1} is defined by $h^{-1}(x)=2 x$

Example:

Let $B=\{x: x \geq 1$ or $x<0\}$ and defined by $f(x)= \begin{cases}x+1 & x \\ 2 x & x\end{cases}$
find f^{-1} if possible.
Solution:

1. the engton, skijection

Example:

let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ and defined by

$$
f(n)=\left\{\begin{array}{ll}
\frac{n}{2} & n \text {, even } \\
\frac{1-n}{2} & n \text {, odd }
\end{array}\right\}
$$

find f^{-1} if possible.
Solution:
$\mathrm{f}^{-1}: \mathrm{Z} \rightarrow \mathrm{N}$ is defined by
let $\mathrm{f}^{-1}(\mathrm{~m})=\mathrm{n} \rightarrow \mathrm{f}(\mathrm{n})=\mathrm{m}$
i. $\quad n$ is even $\frac{n}{2}=m$

$$
\mathrm{n}=2 \mathrm{~m}
$$

$$
\mathrm{f}^{-1}(\mathrm{~m})=2 \mathrm{~m}, \quad \mathrm{~m}>0
$$

ii. $\quad n$ is odd $\frac{1-n}{2}=m$

$$
1-\mathrm{n}=2 \mathrm{~m}
$$

$$
\mathrm{n}=1-2 \mathrm{~m}, \mathrm{~m} \leq 0
$$

$$
\begin{array}{ll}
\mathrm{n}>0 & \mathrm{f}^{-1}(\mathrm{~m})=1-2 \mathrm{~m} \\
-\mathrm{n}<0 & \frac{1-\mathrm{n}}{2}<\frac{1}{2} \\
& \mathrm{~m}<\frac{1}{2} \\
& \mathrm{~m} \leq 0
\end{array}
$$

then

Question:
Find the inverse of each of the following bijective (bijection)

1. $f: R \rightarrow R$ defined by $f(x)=\frac{1-2 x}{3}$
2. $f: R \rightarrow R$ defined by
solution:
$f(x)=\left\{\begin{array}{ll}x^{2} & x \geq 2 \\ x+2 & x<2\end{array}\right\}$
3. $f: R \rightarrow R$ defined by $f(x)=\frac{1-2 x}{3}$

$$
\begin{aligned}
\mathrm{f}^{1}(\mathrm{y})=\mathrm{x} \quad \mathrm{f}(\mathrm{x})=\mathrm{y} \rightarrow \frac{1-2 \mathrm{x}}{3} & =\mathrm{y} \\
1-2 \mathrm{x} & =3 \mathrm{y} \\
2 \mathrm{x} & =1-3 \mathrm{y} \\
\mathrm{x} & =\frac{1-3 y}{2}
\end{aligned}
$$

$$
\mathrm{f}^{1}(\mathrm{x})=\frac{1-3 \mathrm{x}}{2}
$$

2. f: $R \rightarrow R$ defined by
$f(x)=\left\{\begin{array}{ll}x^{2} & x \geq 2 \\ x+2 & x<2\end{array}\right\}$ $\mathrm{f}^{-1}: \mathrm{R} \rightarrow \mathrm{R} \quad \mathrm{f}^{1}(\mathrm{y})=\mathrm{x} \rightarrow \mathrm{f}(\mathrm{x})$
i. $\quad x \geq 2$,
ii. $\quad x<2, \quad(x)=x+2=y$

Solving form inverse function algebraically is a three steps process:

1. set the function equally y
2. swap the x and y variables
3. solve for y

