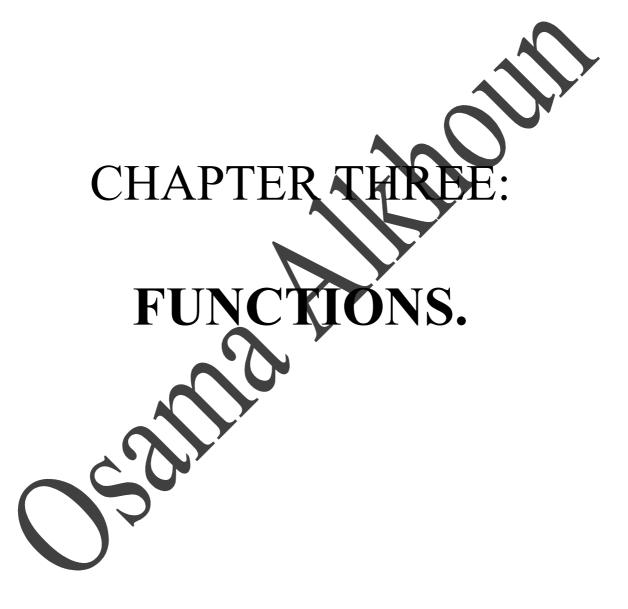
Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

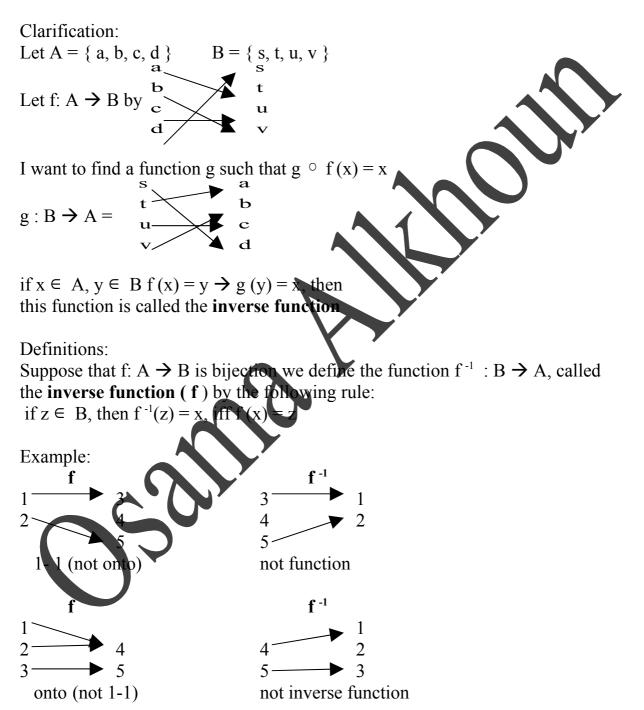
Second Seme*s*ter 2009/2010

Done by: Osama Alkhoun



SECTION 3.4: Inverse functions.

The inverse of a function $f : A \to B$ is the relation define a bijection relation $f^{-1} : B \to A$ is the relation given by $f^{-1}(x) = y \leftrightarrow f(y) = x$.



Proposition: Suppose that f: A \rightarrow B is a bijection (bijective) f⁻¹ = B \rightarrow A is its inverse, then for all $x \in A$, we have $f^{-1} \circ f(x) = x$ 1. 2. for all $x \in B$, we have $f \circ f^{-1}(x) = x$ Proof: for all $x \in A$, we have $f^{-1} \circ f(x) = x$ 1. $f^{-1} \circ f(x) = x, \forall x \in A f: A \rightarrow B$ let $f(x) = z \in B$ $f^{-1}(z) = x$ $f^{-1} \circ f(x) = f^{-1}(f(x)) = f^{-1}(z) = x$ $f^{-1}(x) = x \quad \forall x \in B$ 2. $f^{-1}: B \rightarrow A$ let $f^{-1}(x) = z \in B$ $f: A \rightarrow B$ f(z) = x $f \circ f^{1}(x) = f(f^{1}(x)) = f(z) = x$ NOTE: f: A \rightarrow B, f¹: B \rightarrow A, that is to say 1. $f \circ f^{-1} = id_B$ 2. $f^{-1} \circ f = id_A$ Example: x - 1, find f⁻¹ if possible. Let f: $R \rightarrow R$ be defined by f (x) Solution: 1. the function is bijection 2. $f^1 : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f^1(y) = \frac{y+1}{3}$ then $f(x) = y \quad 3x - 1 = y$ let f 3x = y + 1 $x = \frac{y+1}{3}$ 3 Example: let f: R \rightarrow R be defined by f (x) = [x], find f⁻¹ if possible. Solution: This function is not 1 - 1x = 0.1y = 0.3then f(x) = f(y) = 0

So, the function f has no inverse.

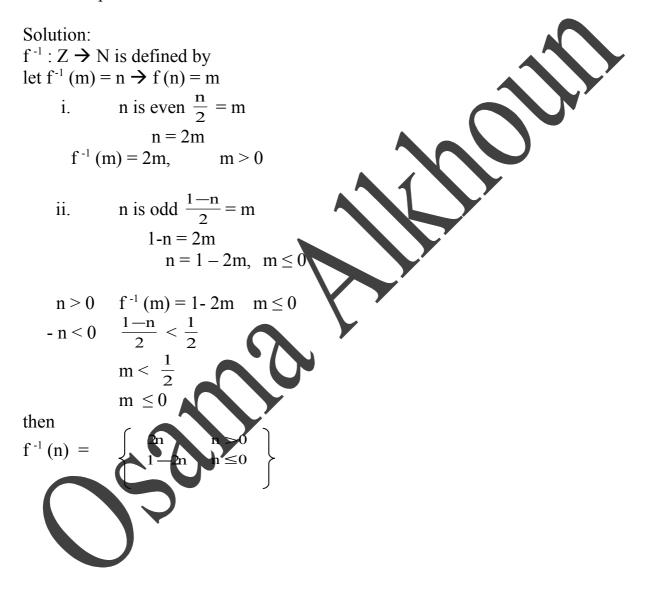
Example:

Let h: E \rightarrow Z, where E is the set of all even integer be defined by h (x) = $\frac{x}{2}$, find f⁻¹ if possible. Solution: the function is injective 1. let h(x) = h(y) (want x = y) $\frac{x}{2} = \frac{y}{2}$ $\mathbf{x} = \mathbf{y}$ the function is surjective 2. let $y \in Z$ (want $\exists x \in E : h(x) = y$) $\frac{x}{2} = y$ let h(x) = yx = 2ylet $x = 2y \in E$, then h(x) = ylet $h^{-1}(y) = x$, then h(x) = y $\frac{x}{2} = y$ x = 2vthen h^{-1} is defined by $h^{-1}(x) = 2x^{-1}$ Example: Let $B = \{x : x \ge 1 \text{ or } x < 0\}$ and defined by $f(x) = \int_{-\infty}^{x} x^{+1} \quad x \ge 0$ 2x find f⁻¹ i[‡] possible. Solution: unction is bijection 1. the Residual Re 2. x + 1 = yx = y - 1 $y \ge 1$ $2\mathbf{x} = \mathbf{y}$ $x = \frac{y}{2} \qquad y < 0$ $f^{-1}(x) = \begin{cases} \frac{y}{2} & y \ge 1 \\ \frac{y}{2} & y < 0 \end{cases}$ $y \ge 1 : \text{ from define B} \\ y < 0 : \text{ from define B} \end{cases}$

Example: let $f: N \rightarrow Z$ and defined by

$$f(n) = \left\{ \begin{array}{cc} \frac{n}{2} & n, \text{ even} \\ \frac{1-n}{2} & n, \text{ odd} \end{array} \right\}$$

find f⁻¹ if possible.



Question:

Find the inverse of each of the following bijective (bijection)

- set the function equally y
 swap the x and y variables
- 3. solve for y

osana hind