Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER THRE:
 FUNCIIONS.

Section 3.3

Composition of functions

Suppose there are two functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$. The composition function $\mathrm{g} \circ \mathrm{f}: \mathrm{A} \rightarrow \mathrm{C}$ is defined by $\mathrm{g}^{\circ} \mathrm{f}(\mathrm{a})=\mathrm{c} \leftrightarrow \mathrm{f}(\mathrm{a})=\mathrm{b} \wedge \mathrm{g}(\mathrm{b})=\mathrm{c}$. In particular when $\mathrm{A}=\mathrm{B}=\mathrm{C}$ this definition coincides with that of arbitrary relations on A.

NOTE:
To define $\mathbf{g}^{\circ} \mathbf{f}$ must be the Domain (g) itself the CoDomain (f).

Example:

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$B=\{x, y, z\}$
$C=\{s, t\}$ and defined;

1. f: $\mathrm{A} \rightarrow \mathrm{B}$ by

$$
f(a)=y \quad f(b)=z \quad f(c)=x
$$

2. g: $\mathrm{B} \rightarrow \mathrm{C}$ by

$$
\mathrm{g}(\mathrm{y})=\mathrm{s} \quad \mathrm{~g}(\mathrm{z})=\mathrm{s} \quad \mathrm{~g}(\mathrm{x})=\mathrm{t}
$$

3. $g(f(a))=g(y)=s$
$g \circ f(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x}))$
$g(f(a))=g$

$$
\mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B}
$$

g: B \rightarrow C
$g(f(b))=g(z) \sim$
$g(f(c))$
we andefine a ney function $\mathrm{h}: \mathrm{A} \rightarrow \mathrm{C}$ by $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})$), this function is called the compasition of function (f) with (g), and is denoted by (g circle f)
$(g \circ f)$ and defined by $g \circ f(x)=g(f(x))$

Example:

let f, g be defined by the diagrams

Question 1:

Find:

1. $\mathrm{f} \circ \mathrm{g}$ if possible?
2. $\mathrm{g} \circ \mathrm{f}$ if possible?
3. $\mathrm{f} \circ \mathrm{h}$ if possible?
4. $h \circ f$ if possible?
5. $\mathrm{h} \circ \mathrm{g}$ if possible?
6. $\mathrm{g} \circ \mathrm{h}$ if possible?
$\circ \mathrm{f} \circ \mathrm{g}$ if possible?
Not defined $f(g(x))$

$\circ \mathrm{h} \circ \mathrm{g}$ if possible?
$=\mathrm{f}(\mathrm{g}(\mathrm{x}) \mathrm{m} \xrightarrow{2}$
$\circ \mathrm{g} \circ \mathrm{h}$ if possible?

Not defined $g(h(x))$

Note:
f: $\operatorname{Dom}(\mathrm{f}) \rightarrow \operatorname{CoDom}(\mathrm{f})$
$\mathrm{g}: \operatorname{Dom}(\mathrm{g}) \rightarrow$ CoDom (g)
and $\left(\mathrm{g}{ }^{\circ} \mathrm{f}=\mathrm{f}{ }^{\circ} \mathrm{g}\right) \operatorname{IF}[\operatorname{Dom}(\mathrm{g})=\operatorname{CoDom}(\mathrm{f})=\operatorname{Dom}(\mathrm{f})=\operatorname{CoDom}(\mathrm{g})]$
Example:
suppose $f: R \rightarrow R$ defined by $f(x)=x^{2}+3$. $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{g}(\mathrm{x})=4 \mathrm{x}-5$
Find $f \circ g$ and $g \circ f$, if possible ?

$$
\begin{aligned}
\mathrm{f} \circ \mathrm{~g}=\mathrm{f}(\mathrm{~g}(\mathrm{x})) & =[\mathrm{g}(\mathrm{x})]^{2}+3 \\
& =(4 \mathrm{x}-5)^{2}+3 \\
& =16 \mathrm{x}^{2}+25-40 \mathrm{x}+3 \\
& =16 \mathrm{x}^{2}-40 \mathrm{x}+28
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{g} \circ \mathrm{f}=\mathrm{g}(\mathrm{f}(\mathrm{x})) & =4[\mathrm{f}(\mathrm{x})]-5 \\
& =4\left(\mathrm{x}^{2}+3\right)-5 \\
& =\left(4 \mathrm{x}^{2}+12\right)-5 \\
& =4 \mathrm{x}^{2}+7
\end{aligned}
$$

Example:
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=$
Let $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{g}(\mathrm{x})=$

$$
\left.\begin{array}{ll}
(2 x+1)^{3} & x>0 \\
(2 x+1)^{3} & \frac{-1}{2}<x \leq 0 \\
3(2 x+1)-7 & x \leq \frac{-1}{2}
\end{array}\right\}
$$

Theorem:
Suppose that f: A \rightarrow B and g: B \rightarrow C, then
i. if f and g are both injective then $g \circ f$ is injective
ii. if f and g are both surjective then $g \circ f$ is surjective

Proof:

i. if f and g are both injective then $g \circ f$ is injective $\mathrm{g} \circ \mathrm{f}: \mathrm{A} \rightarrow \mathrm{C}$
let $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ with $\mathrm{x} \neq \mathrm{y}($ want $\mathrm{g} \circ \mathrm{f}(\mathrm{x}) \neq \mathrm{g} \circ \mathrm{f}(\mathrm{y}))$
$\rightarrow \mathrm{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$
$\rightarrow \mathrm{g} \circ \mathrm{f}(\mathrm{y})=\mathrm{g}(\mathrm{f}(\mathrm{y}))$
$\mathrm{x}, \mathrm{y} \in$ A with $\mathrm{x} \neq \mathrm{y} \rightarrow$ the function is $1-1$ then $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$
$\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y}) \in \mathrm{B}$ with $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y}) \rightarrow 1-1$ then $\mathrm{g}(\mathrm{f}(\mathrm{x})), \mathrm{g}(\mathrm{f}(\mathrm{f})) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{x})) \neq \mathrm{g}(\mathrm{f}(\mathrm{y}))$
ii. if f and g are both surjective then $g \circ f$ is surjactive let $y \in C($ want $\exists x \in A: g \circ f(x)=y)$
$\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$
$y \in C$ and g surjective $\rightarrow \exists z \in B$ such that $g(z)=y$
f: A \rightarrow B
$z \in B$ and f surjective $\rightarrow \exists x \in A$ such that $f(x)=z$
then:
$\mathrm{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(\mathrm{z})=\mathrm{y}$
Corollary
suppose that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and g : is bijective function.

Remark:
It is not true that $18{ }^{\circ}$ is surjective then g and f are both injective

