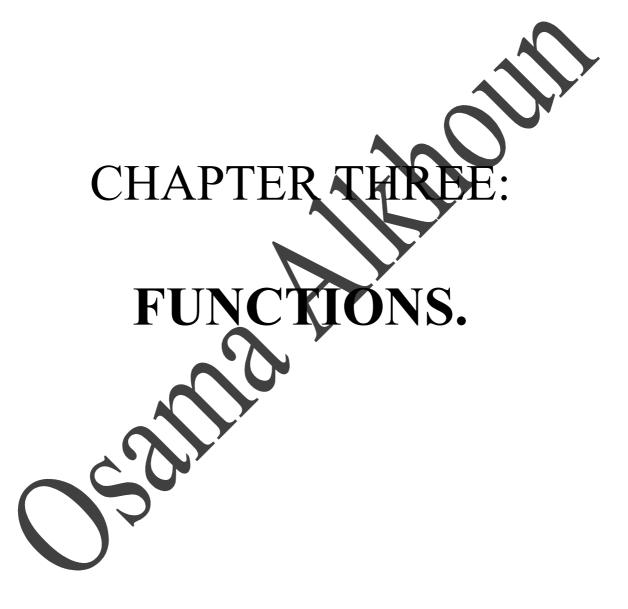
Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Seme*s*ter 2009/2010

Done by: Osama Alkhoun

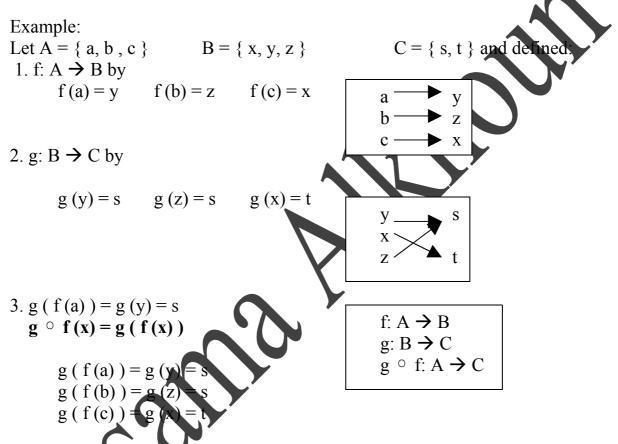


Section 3.3 **Composition of functions**

Suppose there are two functions $f : A \to B$ and $g : B \to C$. The composition function $g \circ f : A \to C$ is defined by $g \circ f(a) = c \leftrightarrow f(a) = b \land g(b) = c$. In particular when A = B = C this definition coincides with that of arbitrary relations on A.

NOTE:

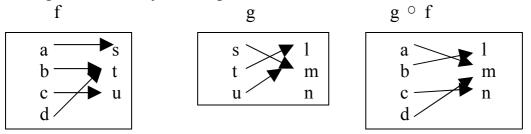
To define $\mathbf{g} \circ \mathbf{f}$ must be the Domain (g) **itself** the CoDomain (f).

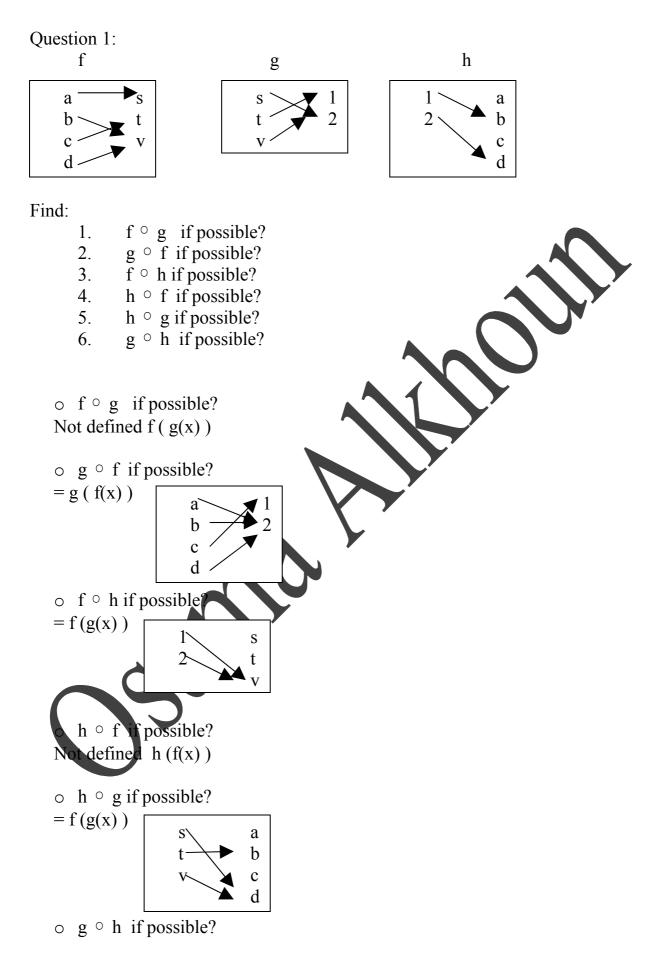


we can define a new function h: A \rightarrow C by h (x) = g (f(x)), this function is called the **composition of function** (f) with (g), and is denoted by (g circle f) (g \circ f) and defined by g \circ f(x) = g (f(x))

Example:

let f, g be defined by the diagrams





Not defined g(h(x))

Note: f: Dom(f) \rightarrow CoDom(f) g: Dom(g) \rightarrow CoDom (g) and $(g \circ f = f \circ g)$ IF [Dom(g) = CoDom(f) = Dom(f) = CoDom(g)]Example: suppose f: R \rightarrow R defined by f (x) = x² + 3. g: R \rightarrow R defined by g (x) = 4x - 5 Find f° g and g \circ f, if possible ? $f \circ g = f(g(x)) = [g(x)]^2 + 3$ $=(4x-5)^2+3$ $= 16x^2 + 25 - 40x + 3$ $= 16x^2 - 40x + 28$ $g \circ f = g(f(x)) = 4 [f(x)] - 5$ $=4(x^{2}+3)-5$ $=(4x^2+12)-5$ $=4x^{2}+7$ Example: Let f: R \rightarrow R defined by f (x) = Let g: $R \rightarrow R$ defined by g (x) = $x \leq 0$ $f \circ g = f(g(x)) =$ **g(x)** 2[g(x)] $x \leq 0$ f(x) $g \circ f = g(f)$ ≤ 0 f(x) $\begin{array}{ccc} & & (2x + 1)^{3} & x > 0 \\ (2x + 1)^{3} & & \frac{-1}{2} < x \le 0 \\ 3(2x + 1) - 7 & x \le \frac{-1}{2} \end{array}$

Theorem:

Suppose that f: A \rightarrow B and g: B \rightarrow C, then

- i. if f and g are both injective then $g \circ f$ is injective
- ii. if f and g are both surjective then $g \circ f$ is surjective

Proof:

if f and g are both injective then $g \circ f$ is injective i. $g \circ f : A \rightarrow C$ let x, y \in A with x \neq y (want g \circ f (x) \neq g \circ f (y)) \rightarrow g ° f (x) = g (f (x)) \Rightarrow g \circ f (y) = g(f(y)) $x, y \in A$ with $x \neq y \rightarrow$ the function is 1 - 1 then $f(x) \neq f(y)$ $f(x), f(y) \in B$ with $f(x) \neq f(y) \rightarrow 1 - 1$ then g(f(x)), g(f(x)) $f(y) \neq g(f(y))$ if f and g are both surjective then $g \circ f$ is surjective ii. let $y \in C$ (want $\exists x \in A : g \circ f(x) = y$) g: $B \rightarrow C$ $y \in C$ and g surjective $\rightarrow \exists z \in B$ such that g f: $A \rightarrow B$ $z \in B$ and f surjective $\rightarrow \exists x \in A$ such that f then: $g \circ f(x) = g(f(x)) = g(z) = y$

Corollary

suppose that f: A \rightarrow B and g: B \rightarrow C bijective functions, then g \circ f : A \rightarrow C is bijective function.

Remark:

It is not true that if $g \circ f$ is surjective then g and f are both injective Example:

É C V	g	$g \circ f$
	$s \rightarrow a$	a ──► a
b t	t b	b b
c → u	u → c	c c
V V	v —	

osana hind