Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Seme*s*ter 2009/2010

Done by: Osama Alkhoun

SECTION 3.2: Injective and surjective functions.

Definition:

- i. A function f: A \rightarrow B is called **injective (1-1) (one to one)** if, wherever x, y \in A, with x \neq y, then f (x) \neq f(y)
- ii. A function f: $A \rightarrow B$ is called surjective (onto) (comprehensive) if,
 - for all $y \in B$, there exist $x \in A$ such that f(x) = y
- iii. A function that is both injective (1-1) and surjective (onto) is called **bijective** or **one to one correspondence**

Properties of a function $f: A \rightarrow B$.

- 1) \hat{f} is one-to-one or an injection if : f(x) = f(y)
- 2) f is onto or a surjection if : f(A) = B.
- 3) f is a bijection if both one-to-one and onto

Example: All the following are functions define by $f : A \to B$.

- 1. $A = \{1, 2, 3\}, B = \{x, y, z, w\}, f = ((1,y), (2,z), (3,w)\}$ is **one-to-one** but not onto.
- 2. $A = \{1, 2, 3\}, B = \{x, y, z, w\}, f = \{(1,y), (2,w), (3,w)\}$ is neither one-to-one nor or to.
- 3. $A = \{1, 2, 3\}, B = \{x, y, z\}, f = \{(1,y), (2,z), (3,x)\}$ is both **one-to-one and onto (bijective)**.
- 4. $A = \{1, 2, 3, 4\}, B = \{x, y, z\}, f = \{(1, y), (2, z), (3, y), (4, x)\}$ is **onto** but not one-to-one.
- Clarification for define Injective, surjective and bijective functions :

NOT one to one (1 - 1)

For each element in group A have one element in group B

NOT onto (comprehensive)

For each element in group A have all elements in group B, and every elements in group B have at least one element in group A.

osana hind

Math 152

Example: Let $A = \{1, 2, 3\}$ $B = \{4, 5\}$ f: A \rightarrow B defined by 2 3 $x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$ 1. 2, $3 \in A$, but f(2) = f(3) = 5Then NOT one to one (1-1)2. $\forall y (CoDom A) \in B, \exists x \in A \text{ such that } f(x) = y.$ $4 \in B$, $1 \in A$ and f(1) = 4 onto $5 \in B, 2 \in A \text{ and } f(2) = 5 \text{ onto}$ f: $[2, -2] \rightarrow [0, 5]$ defined by f (x) = x² 3. $f(x) = x^2 + 1$ $f(2) = 2^2 + 1$ = 5 $f(x) = x^2 + 1$ $f(-2) = -2^2 + 1$ = 5 $x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$ 2, -2 \in A, 2 \neq -2 \rightarrow f (2) = f(-2) NOT one to one Example: $A = \{a, b, c\}$ B Let f: A \rightarrow B defined f(a) = sf (b $x, y \in A, x \neq A$ (v) a, b, c \in A, a \neq b \neq $f(a) \neq f(b) \neq f(c)$ (1-1) injective. $v \in B$ but not $\exists x \in A$ such that f(x) = vNOT onto

NOTE:

Suppose A, B are sets, and |A| = 3, |B| = 2, then:

1. If $|\mathbf{A}| > |\mathbf{B}|$, then any function f: $\mathbf{A} \rightarrow \mathbf{B}$ cannot be 1 - 1 or injective

2. If |A| < |B|, then any function f: A \rightarrow B cannot be **onto** or **surjective**

Definition:

A function that is both injective (1 - 1) and surjective (onto) is called **bijective** or **one to one correspondence**

Example: Let f: $\{1, 2\} \rightarrow \{a, b\}$ be defined by f(1) = a, f(2) = b $x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$ the function is (1-1) $\forall y (CoDom A) \in B, \exists x \in A \text{ such that } f(x) = y.$ the function is (onto) Then is (1-1) and (onto) called **bijective**. Example: Let f: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by f(1) = a, f(2) = a, f(2) = a, f(3) = a, $x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$ $1, 2 \in A, 1 \neq 2 \rightarrow f(1) = f(2)$ the function is NOT (1-1) $\forall y (CoDom A) \in B, \exists x \in A \text{ such that } f(x) =$ $c \in B$ but not $\exists x \in A$ such that f(x) =the function is NOT (onto) Then is NOT (1-1 and onto)Example: Suppose f: $R \rightarrow R$ defined by f (x) = x + 1. Is f injective (one to one) (1-1)? yes 2. Is f surjective (onto)? yes 3. Is f bijective? Then yes Solution: Is f injective (one to one) (1-1)? 1. +1 = f(y)f(x) = xective (onto)? Is f suri R, want $\exists x : f(x) = y \rightarrow f(y-1) = (y-1) + 1 = y$ let $x - y \in R$ f(x) = f(y-1) = (y-1) + 1 = y let x =f(x) = y3. Is f bijective? x + 1 = yx = y - 1the function is (1-1)the function is (onto) Then **ves**

Math 152

Example: Let f: R \rightarrow R defined by f (x) = 3x - 1 1. Is f injective (one to one) (1-1)? yes 2. Is f surjective (onto)? yes 3. Is f bijective? Then yes Solution: Is f injective (one to one) (1-1)? 1. suppose f(x) = f(y) (want x = y) 3x - 1 = 3y - 13x = 3v $\mathbf{x} = \mathbf{y}$ f(x) = yIs f surjective (onto)? 2. let $y \in R$, (want $\exists x \text{ such that } f(x) = y$) 3x - 1 = y $f(\frac{y+1}{3}) = 3(\frac{y+1}{3}) - 1 = y$ 3x = y + 1 $=\frac{y+1}{3}$ Х $= 3\left(\frac{y+1}{3}\right) = y+1$ $=\left(\frac{y+1}{3}\right) = \frac{y+1}{3}$ then $\frac{y+1}{3} \in R$ and $f(\frac{y+1}{3}) =$ 3. Is f bijective? the function is (1-1)the function is (onto) Then yes Example: Let f: N \rightarrow N defined 1. Is f injective (one to -1)? yes 2. Is f surjective (onto 3. Is f bijective? The Suppose f(m) = f(m) (want n=m) 1. $2^n = 2^m$ $\rightarrow n = m$ Note $3 \neq 2^n$ NO $\exists n \in \mathbb{N}$ such that $f(n) = 2^n = 3$ 2. 3. Is f bijective? the function is (1-1)the function is NOT (onto) Then **Not** bijective

Osama Alkhoun (Mobile: 0796484613)

Math 152

NOTE: The function 1 -1 definition by If $x \neq y \rightarrow f(x) \neq f(y)$ then $f(x) = f(y) \rightarrow x = y$ then $x \neq y \rightarrow f(x) = f(y)$ [contradiction rule] Example: let f: R \rightarrow R defined by f (x) = $\frac{2x - 1}{3}$ 1. Is f injective (one to one) (1-1)? yes 2. Is f surjective (onto)? yes 3. Is f bijective? Then ves 1. Is f injective (one to one) (1-1)? suppose f(x) = f(y) $\frac{2x-1}{3} = \frac{2y-1}{3}$ 2x - 1 = 2y - 12x = 2y $\mathbf{x} = \mathbf{y}$ Then Function is (1-1)2. Is f surjective (onto)? f(x) = y $f(\frac{3y+1}{2}) = y !!?$ $\frac{2x-1}{3}$ = y $\frac{2\frac{3y+1}{2}-1}{3} = y$ 2x - 1 = 3y2x = 3y + 1 $x = \frac{3y + 1}{2}$ $\frac{3y}{3} = y$ $\mathbf{v} = \mathbf{v}$ 3. Is f bijective? the function is), the function is (onto), Then yes Example let f: $Z \rightarrow Z$ defined by f (n) = 3n + 1 is f one to one Suppose f(n) = f(m)(want n = m) f(n) = m3n + 1 = 3m + 13n + 1 = m3n = m - 13n = 3mn = m $n = \frac{m-1}{3}$ then one to one (1-1)no \exists n f (n) = 2 is f onto? Counter example: $2 \in Z$ but no $\exists n \in Z$ such that f(n) = 3n + 1 = 2Example:

Let f: $R \rightarrow R^+$ defined by f (x) = x² + 2 1. Is f injective (one to one) (1-1)? no 2. Is f surjective (onto)? no 3. Is f bijective? Then no Solution: 1. Is f injective (one to one) (1-1)? $2 \neq -2$ but f (2) = $2^2 + 2 = -2^2 + 2 = f(-2)$ Not injective (1-1)2. Is f surjective (onto)? $1 \in \mathbb{R}^+$ but no $\exists x \in \mathbb{R}$ such that $x^2 + 2 = 1$ Not surjective 3. Then not bijective Example: $f(x) = \begin{cases} x^2 - 2x + 5 \\ x - 1 \end{cases}$ Let f: $R \rightarrow R$ defined by 1. Is f injective (one to one) (1-1) ves 2. Is f surjective (onto)? Yes 3. Is f bijective? Then Yes Case1: x, $y \le 1$ suppose f(x) = f(y) $\mathbf{x} - 1 = \mathbf{y} - 1$ $\mathbf{x} = \mathbf{y}$ Case 2: x, y > 1 Suppose f (x) (want x = y) $x^2 - 2x + 5 = y^2 - 2x$ $x^2 - 2x = y^2$ $x^2 - 2x$ $x^2 - v^2$ 0 = 02 y, and y = 2 - xCase 3: $y \le 1$ and x > 1 $x \ne y$, f(x) = f(y) (want contradiction) $x^2 - 2x + 5 = y - 1$ $x^2 - 2x + 5 - y + 1 = 0$ $(x-1)^2 + 5 - y = 0$ $(x-1)^2 = y - 5$

osana hind