Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER THRE:
 FUNCIIONS.

SECTION 3.2:

Injective and surjective functions.

Definition:
i. A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is called injective ($\mathbf{1 - 1}$) (one to one) if, wherever $x, y \in A$, with $x \neq y$, then $f(x) \neq f(y)$
ii. A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is called surjective (onto) (comprehensive) if, for all $y \in B$, there exist $x \in A$ such that $f(x)=y$
iii. A function that is both injective $(1-1)$ and surjective (onto) i called bijective or one to one correspondence

Properties of a function $f: A \rightarrow B$.

1) f is one-to-one or an injection if: $f(x)=f(y) \rightarrow x+y$.
2) f is onto or a surjection if: $f(A)=B$.
3) fis a bijection if both one-to-one and onto.

Example: All the following are functions define by $\mathrm{f}: \overline{\mathrm{A}} \rightarrow \mathrm{B}$.

1. $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}\}, \mathrm{f}=\{(1, \mathrm{y}),(2, \mathrm{z}),(3, \mathrm{w})\}$ is one-to-one but not onto.
2. $A=\{1,2,3\}, B=\{x, y, z, w\}, f=\{(1, y),(2, w),(3, w)\}$ is neither one-to-one noronto.
3. $A=\{1,2,3\}, B=\{x, y, z\}, f=\{(1, y),(2, z),(3, x)\}$ is both one-to-ane and onto (bijective).
4. $\quad \mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \mathrm{f}=\{(1, \mathrm{y}),(2, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x})\}$ is onto butnopone-torone.
Clayffication for define Injective, surjective and bijective functions:

NOT one to one (1-1)
For each element in group A have one element in group B
NOT onto (comprehensive)
For each element in group A have all elements in group B, and every elements in group B have at least one element in group A.

Example:

Let $\mathrm{A}=\{1,2,3\}$
f: A \rightarrow B defined by

$\xrightarrow{\mathrm{B}=\{4,5\}}$| $1 \longrightarrow 4$ |
| :--- |
| $2 \longrightarrow 5$ |
| $3 \longrightarrow$ |

1. $\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{x} \neq \mathrm{y} \rightarrow \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$ $2,3 \in A$, but $f(2)=f(3)=5$ Then NOT one to one ($1-1$)
2. $\quad \forall y(\operatorname{CoDom} A) \in B, \exists x \in A$ such that $f(x)=y$.
$4 \in B, 1 \in A$ and $f(1)=4$ onto
$5 \in B, 2 \in A$ and $f(2)=5$ onto
3. $f:[2,-2] \rightarrow[0,5]$ defined by $f(x)=x^{2}+1$.
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+1$
$\mathrm{f}(2)=2^{2}+1$

$$
=5
$$

$$
f(x)=x^{2}+1
$$

$$
f(-2)=-2^{2}+1
$$

$$
=5
$$

$\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{x} \neq \mathrm{y} \rightarrow \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$
$2,-2 \in A, 2 \neq-2 \rightarrow f(2)=f(-2)$
NOT one to one
Example:
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined bl
$\mathrm{f}(\mathrm{a})=\mathrm{s} \quad \mathrm{f}(\mathrm{b}) \quad \mathrm{f}(\mathrm{c})=\mathrm{u}$
$x, y \in A, x \neq y \rightarrow(t(x) \neq f(y)$
$a, b, c \in A, a \neq b \neq \longrightarrow f(a) \neq f(b) \neq f(c)$
($1-1$) injective.
$v \in B$ but not $\exists x \in A$ such that $f(x)=v$
NOT onto
NOTE:
Suppose A, B are sets, and $|\mathbf{A}|=3,|\mathbf{B}|=2$, then:

1. If $|\mathbf{A}|>|\mathbf{B}|$, then any function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ cannot be $\mathbf{1} \mathbf{- 1}$ or injective
2. If $|\mathbf{A}|<|\mathbf{B}|$, then any function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ cannot be onto or surjective

Definition:

A function that is both injective ($1-1$) and surjective (onto) is called bijective or one to one correspondence

Example:

Let $\mathrm{f}:\{1,2\} \rightarrow\{\mathrm{a}, \mathrm{b}\}$ be defined by $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)=\mathrm{b}$
$\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{x} \neq \mathrm{y} \rightarrow \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$
the function is ($1-1$)
$\forall y(\operatorname{CoDom} A) \in B, \exists x \in A$ such that $f(x)=y$.
the function is (onto)
Then is ($1-1$) and (onto) called bijective.

Example:

Let $\mathrm{f}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ be defined by $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)=\mathrm{a}, \mathrm{f}(3)=\mathrm{b}$ $\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{x} \neq \mathrm{y} \rightarrow \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$ $1,2 \in \mathrm{~A}, 1 \neq 2 \rightarrow \mathrm{f}(1)=\mathrm{f}(2)$ the function is NOT ($1-1$)
$\forall y(\operatorname{CoDom} A) \in B, \exists x \in A$ such that $f(x)=y$
$c \in B$ but not $\exists x \in A$ such that $f(x)=q$
the function is NOT (onto)
Then is NOT ($1-1$ and onto)

Example:

Suppose $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=$

1. Is f injective (one to one) (1)? yes
2. Is f surjective (onto) ? yes
3. Is f bijective? Then yes

Solution:

1. Is f iffective (one to one) $(1-1)$?
$\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{P} \boldsymbol{\mathrm { x }}+\mathrm{b} \mathrm{b}=\mathrm{f}(\mathrm{y})$

the function is $(1-1)$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{y} \\
& \mathrm{x}+1=\mathrm{y} \\
& \mathrm{x}=\mathrm{y}-1
\end{aligned}
$$

the function is (onto)
Then yes

Example:

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-1$

1. Is f injective (one to one) ($1-1$) ? yes
2. Is f surjective (onto) ? yes
3. Is f bijective? Then yes

Solution:

1. Is f injective (one to one) $(1-1)$?
suppose $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})($ want $\mathrm{x}=\mathrm{y})$
$3 \mathrm{x}-1=3 \mathrm{y}-1$
$3 \mathrm{x}=3 \mathrm{y}$
$\mathrm{x}=\mathrm{y}$
2. Is f surjective (onto) ?
let $y \in R$, (want $\exists x$ such that $f(x)=y$)

$$
\begin{aligned}
f\left(\frac{y+1}{3}\right) & =3\left(\frac{y+1}{3}\right)-1=y \\
& =3\left(\frac{y+1}{3}\right)=y+1 \\
& =\left(\frac{y+1}{3}\right)=\frac{y+1}{3}
\end{aligned}
$$

then $\frac{\mathrm{y}+1}{3} \in \mathrm{R}$ and $\mathrm{f}\left(\frac{\mathrm{y}+1}{3}\right)=\mathrm{y}$
3. Is f bijective?
the function is ($1-1$)
the function is (onto)
Then yes

Example:

Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined $\mathrm{y} \mathrm{f}(\mathrm{n})=\mathbf{2}^{n}$

1. Is f injective (one to one) $(1-1)$? yes
2. Is f surjective (oonto 3 No
3. Is fbijectiv? Than yo
4.

Suppose $f(n)=f(m)($ want $n=m)$
$2^{\mathrm{n}}=2^{\mathrm{m}} \rightarrow \mathrm{n}=\mathrm{m}$
2. $\quad 3 \in$ but $3 \neq 2^{n}$ NO $\exists n \in N$ such that $f(n)=2^{n}=3$
3. Is f bijective?
the function is ($1-1$)
the function is NOT (onto)
Then Not bijective

NOTE:
The function 1-1 definition by If $\mathrm{x} \neq \mathrm{y} \rightarrow \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$

$$
\begin{aligned}
& \text { then } \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \rightarrow \mathrm{x}=\mathrm{y} \\
& \text { then } \mathrm{x} \neq \mathrm{y} \rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})[\text { contradiction rule }]
\end{aligned}
$$

Example:
let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}-1}{3}$

1. Is f injective (one to one) ($1-1$) ? yes
2. Is f surjective (onto) ? yes
3. Is f bijective? Then yes
4. Is f injective (one to one) ($1-1$)?

$$
\begin{aligned}
& \text { suppose } \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \\
& \frac{2 \mathrm{x}-1}{3}=\frac{2 \mathrm{y}-1}{3} \\
& 2 \mathrm{x}-1=2 \mathrm{y}-1 \\
& 2 \mathrm{x}=2 \mathrm{y} \\
& \mathrm{x}=\mathrm{y}
\end{aligned}
$$

Then Function is ($1-1$)
2. Is f surjective (onto) ?

$$
\begin{aligned}
& \mathrm{f}\left(\frac{3 \mathrm{y}+1}{2}\right)=\mathrm{y}!!? \\
& \frac{2 \frac{3 y+1}{2}-1}{3}=y
\end{aligned}
$$

$$
\frac{3 y}{3}=y
$$

$$
y=y
$$

3. Is f bijective?
the function is 1 , the function is (onto), Then yes
Example:
let $: Z \rightarrow Z$ defined by $f(n)=3 n+1$
is fone to one
Suppose $f(n)=f(m) \quad($ want $n=m)$
$3 n+1=3 m+1$
$3 n=3 m$
$\mathrm{n}=\mathrm{m}$
then one to one ($1-1$)
is f onto?
Counter example:
$2 \in Z$ but no $\exists \mathrm{n} \in \mathrm{Z}$ such that $\mathrm{f}(\mathrm{n})=3 \mathrm{n}+1=2$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{m} \\
& 3 \mathrm{n}+1=\mathrm{m} \\
& 3 \mathrm{n}=\mathrm{m}-1 \\
& \mathrm{n}=\frac{\mathrm{m}-1}{3} \\
& \mathrm{no} \exists \mathrm{nf}(\mathrm{n})=2
\end{aligned}
$$

Example:

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2$

1. Is f injective (one to one) $(1-1)$? no
2. Is f surjective (onto) ? no
3. Is f bijective? Then no

Solution:

1. Is f injective (one to one) $(1-1)$?
$2 \neq-2$ but $\mathrm{f}(2)=2^{2}+2=-2^{2}+2=\mathrm{f}(-2)$
Not injective ($1-1$)
2. Is f surjective (onto) ?
$1 \in \mathrm{R}^{+}$but no $\exists \mathrm{x} \in \mathrm{R}$ such that $\mathrm{x}^{2}+2=1$
Not surjective
3. Then not bijective

Example:

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by

$$
f(x)=\left\{\begin{array}{ll}
x^{2}-2 x+5 & A>1 \\
x-1 & x \leq 1
\end{array}\right\}
$$

1. Is f injective (one to one) $(1-1)$ dyes
2. Is f surjective (onto) ? Yes
3. Is f bijective? Then Yes

Casel:

$$
\begin{aligned}
& \mathrm{x}, \mathrm{y} \leq 1 \operatorname{suppose} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \\
& \mathrm{x}-1=\mathrm{y}-1 \\
& \mathrm{x}=\mathrm{y}
\end{aligned}
$$

Case 2:

$$
x, y>1 \operatorname{Suppose} f(x)=f(y) \quad(\text { want } x=y)
$$

$$
x^{2}-2 x+5=y^{2}-2 y+5
$$

$$
\begin{aligned}
& x^{2}-2 x=y^{2}-2 y \\
& x^{2}-2 x-y^{2}+2 y=0 \\
& x^{2}-y^{2}-2 x+2 y=0
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{2}-y^{2}(-2(x-y)=0\right. \\
& (x+y)[(x+y)-2]=
\end{aligned}
$$

$$
\begin{aligned}
& (x+y)-2=0 \\
& x+y=2
\end{aligned}
$$

$x=2-y$, and $y=2-x$
Case 3:

$$
\begin{aligned}
& y \leq 1 \text { and } x>1 \quad x \neq y, f(x)=f(y) \quad(\text { want contradiction) } \\
& x^{2}-2 x+5=y-1 \\
& x^{2}-2 x+5-y+1=0 \\
& (x-1)^{2}+5-y=0 \\
& (x-1)^{2}=y-5
\end{aligned}
$$

