Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

CHAPTER THRE:
 FUNCIIONS.

SECTION 3.1:

Functions.
Definition:
Let A and B be two sets, A function f from A to B (f: A \rightarrow B) is rule that assign to each element x in A exactly one element y in B , we call A the Domain of (f) and \mathbf{B} the CoDomain of (f).

We write:
$f: A \rightarrow B$, if x is an element of A and y is an element of B assigned to x (We write $y=f(x)$ and call y the function value of f at x.

Example:
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{B}=\{\mathrm{s}, \mathrm{t}, \mathrm{u}\}$
Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be defined by:
$\mathrm{f}(\mathrm{a})=\mathrm{s}$
$\mathrm{f}(\mathrm{b})=\mathrm{t}$
$\mathrm{f}(\mathrm{c})=\mathrm{s}$
$\mathrm{f}(\mathrm{d})=\mathrm{u}$

Note:

1. A is a Domain, and Bis a CoDomain
2. Is a function with $D \mathrm{Dm}(\mathrm{f})=A, \operatorname{CoDom}(\mathrm{f})=B$

is not a function.

 $\mathrm{f}(\mathrm{c})=$??? ??? NoCoAnd $f(b)=s, f(b) \geqslant t$
is more one CoDom
Define:
$\mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ by $\mathrm{g}(\mathrm{a})=\mathrm{t}, \mathrm{g}(\mathrm{b})=\mathrm{s}, \mathrm{g}(\mathrm{c})=\mathrm{u}, \mathrm{g}(\mathrm{d})=\mathrm{t}$ this function
$\operatorname{Dom}(\mathrm{g})=\mathrm{A}, \operatorname{CoDom}(\mathrm{g})=\mathrm{B}$
Define:
Number of functions can be defined from A to B

$$
|\operatorname{CoDom} \quad|^{|\mathrm{Dm}|}=|\mathbf{B}|^{|\mathrm{A}|}
$$

Example:

How many functions can be defined from A to B ?
$\mathrm{h}: \mathrm{A} \rightarrow \mathrm{B}$?.
The cardinality of $\mathrm{A}=4$
The cardinality of $\mathrm{B}=3$
$|\mathbf{C o D o m}|^{|\mathrm{Dam}|}=|\mathbf{B}|^{|\mathrm{A}|}=|\mathbf{3}|^{|4|}=3 \times 3 \times 3 \times 3=81$
$\mathrm{h}: \mathrm{A} \rightarrow \mathrm{B}=81$ functions.

Example:

Let $\mathrm{A}=\{1,2\}$
How many functions can be defined with $\operatorname{Dom}(\mathrm{A})$ and $\mathrm{CoDom}(\mathrm{A})$ \mid CoDom $\left.\right|^{|\mathrm{Dm}|}=|\mathbf{A}|^{|\mathbf{A}|}=|\mathbf{2}|^{|2|}=2 \times 2=4$

$2 \rightarrow$

NOTE:
$\mathrm{f}=\mathrm{g}, \operatorname{iff} \operatorname{Dom}(\mathrm{f})=\operatorname{Dom}(\mathrm{g}), \operatorname{CoDom}(\mathrm{f})=\mathrm{CoDom}(\mathrm{g})$ and $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$
Question 1:
determine which the following rules dento the futnction?
a.
$\underset{2}{ } \rightarrow 2$
Is function

$$
x
$$

Is not function Is function

Is not function

$$
f(1)=1
$$

$$
f(1)=2
$$

is more one CoDom
b.
$f: R \rightarrow Z$, where $f(x)$ is the integer nearest x.
$f(2,5)=2,3$ is not function. (have two CoDom)
c.
$f: R \rightarrow R$, where $f(x)$ is any real number y such that $y^{3}=x$.
then is function. (always have One CoDom)

Question 2:
Let $A=\{a, b, c\}$
$B=\{\mathrm{s}, \mathrm{t}\}$
List all functions from A and B , and from B and A .

1. $\quad \mathrm{A}$ and $\mathrm{B}(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B})$
$|\operatorname{CoDom}|^{|\operatorname{Dom}|}=|\mathbf{B}|^{|\mathbf{A}|}=|\mathbf{2}|^{|3|}=2 \times 2 \times 2=8$

2. B and $A(f: B \rightarrow A)$

$$
|\operatorname{CoDam} \quad|^{|\mathrm{Dam}|}=|\mathbf{A}|^{|\mathrm{B}|}=|3|
$$

$$
-3 \times 3=9
$$

s	a
t	

Let $\mathrm{f}: \mathrm{R}^{+} \rightarrow$ Rdefined by $\mathrm{f}(\mathrm{x})=$ $x+1$
f(0)
$\mathrm{f}(-2)=\operatorname{not}$ defined $-2 \notin \mathrm{R}^{+}$
Example:
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2$ if $\mathrm{x}>1$
$f(x)=3 x-2$ if $x \leq 1$
solution:

```
\(\mathrm{f}(0)\) where \(0 \leq 1\)
\(\mathrm{f}(0)=3 \times 0-2\) if \(0 \leq 1\)
    \(=0-2\)
    \(=-2\)
```

$\mathrm{f}(4)$ where $4>1$

$$
\begin{aligned}
\mathrm{f}(4) & =4^{2}+2 \text { if } 4>1 \\
& =16+2 \\
& =18
\end{aligned}
$$

$f(x)=\left\{\begin{array}{l}x^{2}+2 \text { if } x>1 \\ 3 x 2 i f x \leq 1\end{array}\right\}$
$f(a+1)=\left\{\begin{array}{l}(a+1\}+2 i f(a+1) 1 \\ 3(a l) 2 i f(a+1) 1\end{array}\right\}$
$f(a+1)=\left\{\begin{array}{l}(a+1)^{2}+2 i f a>0 \\ 3(a l) 2 i f a \leq 0\end{array}\right\}$

$\mathrm{f}(\mathrm{a}+1)=\left\{\begin{array}{l}\left.a^{2}+2 a\right\} \\ 3 \\ a\end{array}\right)$
Question 3:
Let $=\{x: x \geq 1\}$
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{R}^{+}$, be defined by $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x} 2+1}{\mathrm{x}}$
Find $f(2), f(1.5), f(-1)$, if possible, for what values of z is $f(z+2)$ defined
solution:
$\mathrm{f}(2)=\frac{\mathrm{x} 2+1}{\mathrm{x}}=\frac{2 \times 2+1}{2}=\frac{5}{2}$
$\mathrm{f}(1.5)=\frac{\mathrm{x} 2+1}{\mathrm{x}}=\frac{1.5 \times 2+1}{2}=\frac{3.25}{2}$

```
\(\mathrm{f}(-1)=\) not defined \((\) must \(\mathbf{x} \geq \mathbf{1}\) from defined)
\(\mathrm{f}(\mathrm{z}+2) \in \mathrm{A}\), iff \(\mathrm{z}+2 \geq 1\)
    \(\mathrm{z} \quad \geq-1\)
```

Example:
let $f: R \rightarrow Z$ by $f(x)$ is the greatest integer less than or equal $x(f(x)=[x])$

1. $\mathrm{f}(0.5)$

$$
\begin{aligned}
\mathrm{f}(0.5) & =[0.5] \\
& =0
\end{aligned}
$$

2. $f(1.2)$

$$
\begin{aligned}
\mathrm{f}(1.2) & =[1.2] \\
& =1
\end{aligned}
$$

3. $f(-0.3)$
$\mathrm{f}((-0.3)=[(-0.3]$

$$
=-1
$$

1. for what values of x is $f(x)=2 ?[2,3)$
2. for what values of x is $f(x)=-3 ?[-3,-2)$

Definition:
Let A be any set and define $f: A \rightarrow A$ py $f(x)=x$ for each $x \in A$, then function f is called the identity function on A denoted by i_{A}

Example:
Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{n})=\nsim \mathrm{n} \in \mathrm{N}$ then f is identity function in $\mathrm{N}, \mathbf{i d}_{\mathrm{N}}$.

