Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 2.9

Proof by Induction

Proof by Mathematical Induction:
To prove a proposition in the form $\forall \mathrm{n} \mathrm{P}(\mathrm{n})$ where n is a natural number, it suffices to prove $\mathrm{P}(1)$ and $\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$.

Example:

Prove the following formula for all natural numbers n.
$1+3+5+7+9+$ $+(2 n-1)=n^{2}$
Solution:
Let $\mathrm{P}(\mathrm{n}): 1+3+5+7+9+\ldots+(2 n-1)=\mathrm{n}^{2}$
We shall prove $\nabla \mathrm{n} \mathrm{P}(\mathrm{n})$ in two steps:

1. $\mathrm{P}(1): 2 \mathrm{n}-1=1 \rightarrow \mathrm{n}^{2}=1^{2}$ so this proposition is $P(2):(2 n-1)+(2 n-1)=1+3 \rightarrow n^{2}=2^{2}$ so this proposition is true.
$P(3):(2 n-1)+(2 n-1)+(2 n-1)=1+3+5 \rightarrow n^{2}-3^{2}$ se this proposition is true.

$$
\mathrm{P}(\mathrm{k}): \sum_{\mathrm{x}=1}^{\mathrm{k}} 2 \mathrm{x}-1=\mathrm{k}^{2} \text { so this proposition is true. }
$$

2. $\quad \mathrm{P}(\mathrm{n}): 1+3+5+7+9+\ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}$

If $\mathbf{2 n} \mathbf{- 1}$ is true then $\mathbf{2 n}+\mathbf{1}$ is true proposition.

$$
\begin{aligned}
& \rightarrow 1+3+5+7+9+.+(2 n-1)+(2 n+1)=n^{2}+(2 n+1) \\
& \rightarrow 1+3+5+7+9+\ldots+(2 n-1)+(2 n+1)=(n+1)^{2}
\end{aligned}
$$

We want to prove the formula is $(\mathbf{n}+1)^{\mathbf{2}}$
$\rightarrow 1+3+5+7+9+\ldots+(2 k-1)+(2 k+1)=k^{2}+(2 k+1)$
$\rightarrow 1+3+5+7+9+.+(2 k-1)+(2 k+1)=k^{2}+2 k+1$
$\rightarrow 1+3+5+8+9+\ldots+(2 k-1)+(2 k+1)=(k+1)^{2}$
$\rightarrow \therefore P(N+1)$ is true
Steps of proof by mathematical induction:
1.
$\therefore P(n) \quad n \geq 0$ is true

- Mathematical Induction is a method to prove that a statement or a proposition of the form $\nabla \mathrm{n} \mathrm{P}(\mathrm{n})$ is true where n is positive integer.

Method:
A proposition $P(n)$ is true for $n \geq 1$ if

1. $\quad P(1)$ is true
2. $\quad P(k) \Rightarrow P(k+1)$ is true for every k in N

Example:

Use mathematics induction to prove
$1+2+3+$

$$
\mathrm{P}(\mathrm{n})
$$

Proof:

1. for $\mathrm{n}=1$
$P(1)=\frac{1(1+1)}{2}=1$
\therefore the proposition is true for $\mathrm{n}=1$
2. suppose that the statement is true for $\mathrm{n}=\mathrm{k}$

$$
1+2+3+\ldots \ldots \ldots \ldots \ldots+k=\frac{k(k+1)}{2}
$$

We want to prove:
$1+2+3+$ \qquad $+\mathrm{k}+(\mathrm{k}+1)=$
3. For $\mathrm{n}=(\mathrm{k}+1)$
$P(k)=1+2+3+\ldots \ldots \ldots \ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)$
$=\frac{\mathrm{K}(\mathrm{k}+1)}{2}+\frac{(\mathrm{k}+1)}{1}$
$=\frac{\mathrm{K}(\mathrm{k}+1)}{2}+\frac{2(\mathrm{k}+1)}{2 \times 1}$
$=\frac{\mathrm{K}(\mathrm{k}+1)}{2}+\frac{2(\mathrm{k}+1)}{2}$
$=\frac{\mathrm{K}(\mathrm{k}+1)+2(\mathrm{k}+1)}{2}$
$(\mathrm{k}+1)$: commonfactor

$$
=\frac{(\mathrm{k}+1)(\mathrm{k}+2)}{2}
$$

Example:

Proof by induction
$1+\mathrm{r}+\mathrm{r}^{2}+\mathrm{r}^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{r}^{\mathrm{n}}=\frac{1-\mathbf{r}^{\mathrm{n}+1}}{1-\mathrm{r}}$
$\mathrm{n} \geq 0$ for any real number.
Proof:

1. for $\mathrm{n}=0$
$\mathrm{P}(0)=1 \rightarrow \quad \frac{1-\mathbf{r}^{\mathrm{n}+1}}{1-\mathrm{r}}=\frac{1-\mathbf{r}^{0+1}}{1-\mathrm{r}}=\frac{1-r}{1-\mathrm{r}}=1$
\therefore the proposition is true for $\mathrm{n}=0$
$P(k)=\frac{1-\mathbf{r}^{\mathrm{k}+1}}{1-\mathrm{r}} \rightarrow \frac{1-\mathbf{r}^{\mathrm{n}+1}}{1-\mathrm{r}}=\frac{1-\mathbf{r}^{\mathrm{k}+1}}{1-\mathrm{r}}$
2. suppose the proposition is true for $\mathrm{n}=\mathrm{k}$
3. For $n=k+1$
$\mathrm{P}(\mathrm{k}+1): 1+\mathrm{r}+\mathrm{r}^{2}+\mathrm{r}^{3}+\ldots \ldots+$
\qquad $+r^{k}+r^{k+1}=$

$1+r+r^{2}+r^{3}+$ \qquad

\therefore the proposition is true for $\mathrm{n}=\mathrm{k}+1$ from 1,2 and 3 :
$1+\mathrm{r}+\mathrm{r}^{2}+\mathrm{r}^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .+\mathrm{r}^{\mathrm{k}}=\frac{\left(1-\mathbf{r}^{\mathrm{k}+2}\right)}{1-\mathrm{r}}$

Proof by induction
$1+2+2^{2}+2^{3}+$ \qquad $+2^{n}=2^{n+1}-1 \quad n \geq 0$
Solution:

1. for $\mathrm{n}=0$

$$
\begin{aligned}
& P(0)=2^{n+1}-1 \\
& P(0)=2^{0+1}-1 \\
& P(0)=2-1 \\
& P(0)=1
\end{aligned}
$$

\therefore the proposition is true for $\mathrm{n}=0$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{k})=2^{\mathrm{k}+1}-1 \\
& \mathrm{P}(\mathrm{k}+1)=2^{\mathrm{k}+1+1}-1 \\
& =2^{\mathrm{k}+2}-1
\end{aligned}
$$

2. suppose the proposition is true for $\mathrm{n}=\mathrm{k}$

$$
\begin{aligned}
& 1+2+2^{2}+2^{3}+\ldots \\
& \quad P(k)=2^{k+1}-1
\end{aligned}
$$

And

Proof:

1. $\quad P(1): A^{c}=A_{1}^{c}{ }^{\prime \prime}$ is true.

$$
\left.\left.=\left(\begin{array}{lllll}
\mathrm{A}_{1}
\end{array}\right] \mathrm{A}_{2} \square \mathrm{~A}_{3} \square \ldots \ldots \ldots .\right] \mathrm{A}_{\mathrm{k}}\right)^{\mathrm{c}} \cap \mathrm{~A}_{\mathrm{k}+1}^{\mathrm{c}}
$$

$$
={A_{1}}^{c} \cap A_{2}{ }^{c} \cap A_{3}{ }^{c} \cap \ldots \cap A_{k}^{c} \cap A_{k+1}^{c}
$$

$$
=\mathrm{A}_{1}{ }^{\mathrm{c}} \cap \mathrm{~A}_{2}{ }^{\mathrm{c}} \cap \mathrm{~A}_{3}{ }^{\mathrm{c}} \cap \ldots \ldots \ldots \ldots \cdot \mathrm{~A}_{\mathrm{k}+1}{ }^{\mathrm{c}}
$$

From 1, 2, 3 we have $\left(A_{1} \square A_{2} \square A_{3} \square \ldots \square A_{n}\right)^{c}=A_{1}{ }^{c} \cap A_{2}{ }^{c} \cap A_{3}{ }^{c} \cap \ldots \cap A_{n}{ }^{c}$ Example:

$$
\begin{aligned}
& 1+2+2^{2}+2^{3}+ \\
& P(k)=\left(2^{k+1}-1\right)+2^{k+1} \\
& =2\left(2^{\mathrm{k}+1}\right)-1 \\
& =2^{1} 2^{\mathrm{k}+1}-1 \\
& =2^{\mathrm{k}+2}-1 \\
& \therefore \text { the proposition is true for } r \geq 0 \\
& \text { Proof by induction } \\
& \left(\mathrm{A}_{1} \square \mathrm{~A}_{2} \square \mathrm{~A}_{3} \square \ldots \ldots . \cap \mathrm{A}_{\mathrm{n}}\right)^{\mathrm{c}}=\mathrm{A}_{1}{ }^{\mathrm{c}} \cap \mathrm{~A}_{2}{ }^{\mathrm{c}} \cap \mathrm{~A}_{3}{ }^{\mathrm{c}} \cap \ldots \ldots \ldots . \cap \mathrm{A}_{\mathrm{n}}{ }^{\mathrm{c}} \\
& \text { For any collection of sets } A_{1}, A_{2}, A_{3}, \ldots \ldots \ldots \ldots \ldots \ldots ., A_{n}
\end{aligned}
$$

Let $\mathrm{Q}(\mathrm{n})$ be the predicate
$2+4+6+$ \qquad $+2 \mathrm{n}=\mathrm{n}(\mathrm{n}+1)$
Prove by induction that $\mathrm{Q}(\mathrm{n})$ is true for all $\mathrm{n}>0$.
Proof:
1.

$$
\text { for } \mathrm{n}=1
$$

$\mathrm{Q}(1)=$ is the proposition
$2=\mathrm{n}(\mathrm{n}+1) \leftrightarrow \rightarrow 2=1(1+1) \leftrightarrow \rightarrow 2=2$ which is true.
$\mathrm{Q}(2)=$ is the proposition
$2+4=\mathrm{n}(\mathrm{n}+1) \leftrightarrow \rightarrow 2=2(2+1) \leftarrow \rightarrow 6=6$ which is true.
$\mathrm{Q}(\mathrm{k})=$ is the proposition
$\mathrm{k}=\mathrm{n}(\mathrm{n}+1) \longleftrightarrow \sum_{\mathrm{x}=1}^{\mathrm{k}} 2 \mathrm{x}=\mathrm{k}(\mathrm{k}+1) \quad$ which is true.
$\mathrm{Q}(\mathrm{k}+1)=$ is the proposition
$\mathrm{K}+1=\mathrm{n}(\mathrm{n}+1) \stackrel{\sum_{\mathrm{x}=1}^{\mathrm{k}+1} \mathrm{x}}{\mathrm{x}}=\mathrm{k}+1(\mathrm{k}+2)$ A which is true.
2. suppose that $\mathrm{Q}(\mathrm{k})$ is true $\mathrm{Q}(\mathrm{k})$ is the proposition
$2+4+6+$
3. $\mathrm{Q}(\mathrm{k}+1)$ is the proposition
$2+4+6+$ \qquad

$=\mathrm{k}(\mathrm{k}+1)+2(\mathrm{k}$
$=(\mathbf{k}+\mathbf{1})(\mathrm{k}+2)$
\therefore from $1,2,3 \mathrm{O}$ (R) is the for all $\mathrm{n}>0$.

