Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 2.5

Power Sets.

$\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$
Is A1 $=\{\mathrm{a}\}$ subset of A ? YES
Is A2 $=\{\mathrm{b}\}$ subset of A ? YES
Is A3 $=\{ \}$ subset of A ? YES
Is $\mathrm{A} 4=\{\mathrm{a}, \mathrm{b}\}$ subset of A ? YES

NOTE:
Number of subset for any set is 2 exponentiation number of $\operatorname{set}\left(2^{n}\right)$
$\mathrm{P}(\mathrm{A})=\{\phi, \mathrm{A},\{\mathrm{a}\},\{\mathrm{b}\}\} \rightarrow\left(2^{2}\right)=4$
$\operatorname{ORP}(A)=\{\{ \},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}\},\{\mathrm{b}\}\} \rightarrow\left(2^{2}\right)=4$
Definition:
Let A be any set, the power set of A, denoted by $P(A)$ is the set of all subsets A.
Example:
Let $A=\{1,2,3\}$
The power of set is $\rightarrow\left(2^{3}\right)=8$
$P(A)=\{\phi, A,\{1\},\{2\},\{3\},\{1,2\}$,
The cardinality (absolute):
$|\mathrm{P}(\mathrm{A})|=8$
$|\mathrm{A}|=$ the number of elements of A
If $\mathrm{A} \mid=\mathrm{n}$ (elements), onen $|\mathrm{P}(\mathrm{A})|=\left(2^{\mathrm{n}}\right)$
Exomple.
Let $B=\phi \quad$ is subset of B
$P(B)=\{\phi\}=\{B\}$ The power of set is $\rightarrow\left(2^{0}\right)=1$ element

Example:

$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
$|\mathrm{P}(\mathrm{A})|=\left(2^{5}\right)=32$
$a \in A$

$$
\mathrm{a} \notin \mathrm{P}(\mathrm{~A})
$$

$\{a\} \notin A$
$\{a\} \in P(A)$

If a Subset $S \subset A \rightarrow$ then the subset $S \in P(A)$
The elements $\{b, d\} \subset A \rightarrow$ the element of $\{b, d\} \in P(A)$
$\{b, d\}$ is group of elements that exist in A set.
$\{b, d\}$ is one element that exist in $P(A)$ set.

$$
\begin{aligned}
\rightarrow & B=\{b, c, d\} \\
& B \subset A \rightarrow B \in P(A) \\
& B \notin A
\end{aligned}
$$

Example:

$$
\text { Let } \begin{aligned}
A= & \{\{x\},\{y, w\}\} \\
& \{x\} \in A \\
& \{y, w\} \in A \\
& \{\{x\}\} \subseteq A \\
& \{\{y, w\}\} \subseteq A
\end{aligned}
$$

$$
P(A)=\{\phi,\{\{x\}\},\{\{y, w\}\},\{\{x\},\{y, w\}\}
$$

Question 3 / page 69 in Book:

$$
\begin{aligned}
& A=\{a, b, c, d, e\} \\
& B=\{a, b\} \\
& \mathrm{C}=\{\mathrm{B}, \phi\} \\
& D=\{a, b,\{a, b\}\} \\
& \mathrm{A} \cap \mathrm{~B}=\mathrm{B}=\{\mathrm{a}, \mathrm{~b}\} \\
& C \cap D=\{\{a, b\}\} \sim B\} \\
& A \cap D=\{a, b\} \\
& C \cap P(A)=B, \phi\} \quad C \\
& \mathrm{D} \cap \mathrm{P}(\mathrm{~A})=\{\{\mathrm{a}, \mathrm{~b}\}=\{\mathrm{B}\} \\
& \rightarrow \text { ndicate whether each of the following is true or false } \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& B-a, b \\
& \mathrm{C}=\{\mathrm{B}, \phi\} \\
& \mathrm{D}=\{\mathrm{a}, \mathrm{~b},\{\mathrm{a}, \mathrm{~b}\}\} \\
& \text { 1. } A \in P(A) \rightarrow \operatorname{true}(X \in P(Y) \text { if } X \in Y) \\
& \text { 2. } \mathrm{C} \subset \mathrm{P}(\mathrm{~A}) \rightarrow \text { true } \\
& \text { 3. } \mathrm{D} \subset \mathrm{P}(\mathrm{~A}) \rightarrow \text { false } \\
& \text { 4. } \mathrm{B} \subset \mathrm{D} \rightarrow \text { true } \\
& \text { 5. } \mathrm{B} \in \mathrm{D} \rightarrow \text { true } \\
& \text { 6. }\{a, b\} \in C \rightarrow \text { true }
\end{aligned}
$$

Example:
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, 2,3\}$
The power set is $2^{4}=16$ elements.

$$
\begin{aligned}
P(A)= & \{A, \phi,\{a\},\{b\},\{2\},\{3\},\{a, b\},\{a, 2\},\{a, 3\},\{b, 2\},\{b, 3\}, \\
& \{2,3\},\{a, b, 2\},\{a, 2,3\},\{a, b, 3\},\{b, 2,3\}\}
\end{aligned}
$$

$C=\{\{a\},\{b\},\{c\}\}$
The power set is $2^{3}=8$ elements.
$P(C)=\{C, \phi,\{\{a\}\},\{\{b\}\},\{\{c\}\},\{\{a\},\{b\}\},\{\{a\},\{c\}\},\{\{b y, c\}\}$
$\mathrm{D}=\{\phi,\{\phi\}\}$
The power set is $2^{2}=4$ elements.

$$
P(D)=\{D, \phi,\{\phi\},\{\{\phi\}\}\}
$$

Question 4 / page 69 in Book Prove that if $\mathrm{A} \subset \mathrm{B}$, then

