Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 2.3

Set Operations

Suppose $B=\{x: x$ is not a natural number $\}$
Natural number: 1, 2, 3, 4,
Is $0 \in B$? yes
Is $1 \in B$? no
Is $1 / 2 \in B$? yes
Is $-1 \in B$? yes
Is the letter 'a' $\in B$? yes
In order the B is well defined, we must stipulate the universal set Y. of which all subsets under discussion are considered to be subsets.

- If B is defined in set Builder - Notation then the univatsal get is the universe of discourse of the predicate.

Example:

$\mathrm{S}=\{\mathrm{x}: \mathrm{P}(\mathrm{x})$ is true $\}$
$\mathrm{U}=\mathrm{Z}$
$B=\{0,-1,-2,-3,-4, \ldots \ldots\} \subset Z$
U: Universal set
$\mathrm{U}=\mathrm{R}$
$\mathrm{B}=(-\infty, 1) \square(1,2) \square(2,3) \square(3,4)$
ㅁ

Definition:
Let A be a subset of universalset
The set $\{x: x$ is in $U A n d x \notin A$ is called the complement of A and denoted be A^{c}

Example:

Let $=\mathrm{P}$
$A=\{x: 1 \leq x \leq 2\}$
$A^{c}=\{x: x<$ and $x>2\}$
$=(\infty, 1) \square(2, \infty)$

Example:

$$
\begin{array}{ll}
\text { Let } \mathrm{U}=\mathrm{Z} \\
\mathrm{~A}=\left\{\begin{array}{l}
\mathrm{x}: \mathrm{x} \text { is rational }\}
\end{array}\right. \\
\qquad \begin{array}{ll}
\mathrm{A}=\mathrm{Z} & \text { (All numbers) } \\
\mathrm{A}^{\mathrm{c}}=\varphi & \text { (empty set) } \\
\mathrm{B}=\varphi & \text { (empty set) } \\
\mathrm{B}^{\mathrm{c}}=\mathrm{Z} & \text { (All numbers) }
\end{array}
\end{array}
$$

Note:
The empty set is contained in every other set.
A is empty set, and B contain any elements then $(A \subset B$)
Example:
$\mathrm{D}=\{\mathrm{x}: \mathrm{x}<1$ and $\mathrm{x}>2\}$
$\mathrm{D}=\varphi$
Definition:
Let A, B be sets
The UNION of A and $B(A \square B)$ in the set $\{x: x \in A$ or $x \in B\}$
The INTERSECTION of A and $B(A \cap B)$ is the set $\{x: x \in A$ and $x \in B\}$
Example:
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$B=\{b, c, e, f\}$
$\begin{aligned}(A \cap B) & =\{x: x \in A \text { or } x \in B\} \\ & =\{a, b, c, d, e, f\} \\ (A \cap B) & =\{x: x \in A \text { and } x \in B\} \\ & =\{b, c\}\end{aligned}$
Example:
$\mathrm{U}=\mathrm{R}$ (universal set)
$A=\{x: 0<x<2\}$
$B=\{x: 1<x<3\}$
$C=\{x: 2<x<4\}$
$(\mathrm{A} \square \mathrm{B})=\{\mathrm{x}: 0$
$(A \cap B)=\{A: 1(x \leq 2\}$
$\left.\begin{array}{l}(\mathrm{A} \cap \mathrm{Q})=\{\mathrm{x} \cdot \mathrm{C}=\mathrm{x}<3\}\end{array}\right\} \mathbf{O R}=\{\mathrm{x}: \varphi\}$
Definition:
Two sets A and B are called disjoint if $\mathrm{A} \cap \mathrm{B}=\varphi$
Then:
Let A be a subset of U, then:

1. $\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\varphi$
2. $A \square A^{c}=U$

Example:

Let A and B be sets of Integers defined by :
$A=\{x: x$ is divisible by 2$\}$
$B=\{x: x$ is divisible by 3$\}$
$(A \square B)=\{x: x$ is divisible by 2 or 3$\}$

$$
\{2,3,-2,-3,6,-6,12,-12 \ldots \ldots .\}
$$

$(\mathrm{A} \cap \mathrm{B})=\{\mathrm{x}: \mathrm{x}$ is divisible by 2 and 3$\}$ $\{6,-6,12,-12,18,-18 \ldots \ldots$.
$\mathrm{A}^{\mathrm{c}}=\{\mathrm{x}: \mathrm{x}$ is not divisible by 2$\}$
$\mathrm{B}^{\mathrm{c}}=\{\mathrm{x}: \mathrm{x}$ is not divisible by 3$\}$
$(\mathrm{A} \square \mathrm{B})^{\mathrm{c}}=\{\mathrm{x}: \mathrm{x}$ not divisible by 2 and not divisible by 3$\}$
$(A \square B)^{c}=A^{c} \cap B^{c}$

$$
(A \cap B)^{c}=A^{c} \square B^{c}
$$

Theorem 1:
Distributive Laws

1. $\mathrm{A} \square(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \square \mathrm{B}) \cap(\mathrm{A}$
2. $A \cap(B \cap C)=(A \cap B)$

Theorem 2:
DeMorgan's laws

1. $(\mathrm{A} \square \mathrm{B})^{\mathrm{c}}=$
2. $(\mathrm{A} \cap \mathrm{B})^{\mathrm{c}}=$

Definition
Le S and T. The set difference at S and T, denoted by $S \backslash T$, is the set
$\left(S \sim T^{c}\right)=\{x: x \in S$ and $x \notin T\}$
Example:
$\mathrm{A}=\{1,2,3,4\}$
$\mathrm{B}=\{3,4,5,6\}$
$\mathrm{A} \backslash \mathrm{B}=\{1,2\}$
$\mathrm{B} \backslash \mathrm{A}=\{5,6\}$

Example:
IS the S, T two sets
$S \backslash T$ and $T \backslash S$ are disjoint
$\rightarrow \mathrm{S} \backslash \mathrm{T} \cap \mathrm{T} \backslash \mathrm{S}=\varphi$
Example:
$\mathrm{A}=\{1,2\}$
$\mathrm{B}=\{1,2,3\}$
$\mathrm{A} \backslash \mathrm{B}=\boldsymbol{\varphi}$ If $\mathrm{A} \subset \mathrm{B}$, then $\mathbf{A} \backslash \mathbf{B}=\boldsymbol{\varphi}$
Remark:
$(\mathrm{A} \backslash \mathrm{B}) \square(\mathrm{B} \backslash \mathrm{A})=(\mathrm{A} \square$
$B) \backslash(A \cap B)$

Theorem:
$(A \square B)=(A \backslash B) \square(B \backslash A) \square(A \cap B)$
($\mathrm{A} \square \mathrm{B}$) : written are UNION of disjoint sets.

Important Identities:

idempotent laws

1. $\mathrm{A} \square \mathrm{A}=\mathrm{A}$
$\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
2. $\mathrm{A} \square \varphi=\mathrm{A}$
$\mathrm{A} \cap \varphi=\varphi$
3. $A \square U=U$
$A \cap U=A$
4. $A \square A^{c}=U$
$A \cap A^{c}=\varphi$
Associativity
5. $(\mathrm{A} \square \mathrm{B}) \mathrm{C}=\mathrm{A}(\mathrm{B} \square \mathrm{C})$
$(A \cap B) \subset=A \cap(B \cap C)$
Commutativit
$A \sim B=B \cap A$
Distributive laws
又 $A \square(B \cap C)=(A \square B) \cap(A \square C)$
$(B \square C)=(A \cap B) \square(A \cap C)$
6. $(\mathrm{A} \square \mathrm{B})^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$ $(A \cap B)^{c}=A^{c} \square B^{c}$
7. $\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$
8. $(A \square B)=(A \backslash B) \square(B \backslash A) \square(A \cap B)$
9. $A \backslash(B \square C)=(A \backslash B) \cap(A \backslash C)$
10. $\mathrm{A} \backslash(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \backslash \mathrm{B}) \square(\mathrm{A} \backslash \mathrm{C})$

