Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 2.2

Set Rational

Definition:

If A and B are two sets, we say that A contained in B if every elements of A is also an element of B.

In symbols: A \subset B called A is a subset of B.

Example:

$\mathrm{A}=\{1,2.3\}$
$\mathrm{B}=\{0,1,2,3,4\}$
$\mathrm{A} \subset \mathrm{B} \quad$ but $\quad \mathrm{B} \not \subset \mathrm{A}$

NOTE:

To prove that $\mathrm{A} \subset \mathrm{B}$ we must prove that if x is an ecementof A , then x must be an element of B.

Question 1
$A=\{x: x$ is an even integer $\}$
$B=\{x: x$ is an integer divisible by 6
$\mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is an integer divisible by 2 or 2$\}$
$D=\{x: x$ is an integer divisible by 2 and 3

1. IS A \subset B ? NO, $2 \in$ A but $2 \notin \mathrm{~B}$
2. IS B $\subset C 2$ YES

PROOF:
$B=\{x: x$ is an thegeydivisible by 6$\}$
Let x beamele neytaf B then $(x / 6=n) \rightarrow(x=6 n)$.
$x=6 n+$ fonsome integer n.
$\mathrm{X}=2(3 \mathrm{n})$
$X / 2=2(2(3 n))$
$\therefore \mathrm{x}$ divisible by 2
$\therefore \mathrm{x}$ is an element of C
3. $\mathrm{C} \subset \mathrm{B} ? \mathrm{NO} \rightarrow 2 \in \mathrm{C}$ but $2 \notin \mathrm{~B}$

4. $\mathrm{B} \subset \mathrm{D}$? YES (true)

PROOF:
Let x be an element of D

$$
\mathrm{x} / 2=\mathrm{n} \mathrm{x} / 3=\mathrm{m}
$$

$$
2 \mathrm{n}=\mathrm{x} \quad 3 \mathrm{~m}=\mathrm{x}
$$

$$
2 \mathrm{n}=3 \mathrm{~m}
$$

$$
\mathrm{n}=3 \mathrm{~m} / 2
$$

$$
\rightarrow \mathrm{m}=2 \mathrm{y}
$$

But $\quad 3 \mathrm{~m}=\mathrm{x}$
$x=6 y$

NOTES:

- $\quad A=B$ if every element of A is an element of B ard every element of B is an element of A.
- $\quad A \subset B$ every element of A is an element of B
- $\quad B \subset A$ every element of B is an element of
- $\quad \mathrm{A}=\mathrm{B}$ IFF $\mathrm{A} \subset \mathrm{B}$ AND $\mathrm{B} \subset A$
- If $A \subset B$ and $A \neq B$, then A iscalled a proper subset of B

To show that A is not contained in B we need only to show one element of A is not element of B
$\mathrm{A}=\{1,2,3\}$
$\mathrm{B}=\{1,2,4\}$
$3 \in \mathrm{~A}$ and $3 \notin \mathrm{~B} \rightarrow \mathrm{~A} \not \subset \mathrm{~B}$

