Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 1.6

Proof in mathematics

1. Direct Proof
$P_{1}, P_{2}, P_{3}, \ldots \ldots ., P_{n} \rightarrow C$ is rational numbers
Theorem 1: if x is even integer, then x^{2} is also even.
PROOF:
Suppose that x is even integer
$\mathrm{x}=2 \mathrm{n}$: for some integers
$x^{2}=4 n^{2}=2\left(2 n^{2}\right)$ therefore x^{2} is also even.
x^{2} is even
2. Contrapositive

Theorem 2: if x is integer and x^{2} is even, then x is even. $: x^{2}$ even $\Rightarrow x$ is even.
PROOF:
Suppose that x is odd integer
$\mathrm{x}=2 \mathrm{n}+1$
$\mathrm{x}^{2}=(2 \mathrm{n}+1)^{2}$
$x^{2}=4 n^{2}+4 n+1$
$\therefore \quad \mathrm{x}^{2}$ is odd.
Theorem 3: If $\underline{x^{2}}$ is even, then \underline{x} is even.
 > Contrapositive Diret Proof
 \section*{Contrapositive Dineet Proof}
 \section*{Contrapositive Dineet Proof}
3. Biconditional
$P \Leftrightarrow Q$ equivalent $(P=Q \wedge(Q \Rightarrow P)$

Theorem 4:

Let x be an integer then x is even if and only if \underline{x}^{2} is even

P

(\Rightarrow) suppose x is eyen (Theorem 1: direct Proof)
(\Leftarrow) even thein x is even (Theorem 2: Contrapositive)
4. The Contradiction
$\mathrm{Q} \rightarrow \mathrm{P} \wedge \sim \mathrm{Q}$ (negation)
$P_{1} \wedge P \Delta P_{3} \wedge \ldots \ldots . \wedge P_{n} \Rightarrow C \rightarrow P_{1} \wedge P_{2} \wedge P_{3} \wedge \ldots \ldots \wedge P_{n} \wedge \sim C$

Theorem 5:

There is no rational number x such that $\mathrm{x}^{2}=2$
If \underline{x} rational, then $\underline{x^{2} \neq 2}$

$$
P \quad Q \quad \text { negation wanted }(P \wedge \sim Q)
$$

PROOF:
Suppose x is rational and $\mathrm{x}^{2}=2$

$\mathrm{a}^{2}=2 \mathrm{~b}^{2}$
theorem :
a^{2} is even $\rightarrow a$ is even $a=2 n$
$\rightarrow \mathrm{a}^{2}=4 \mathrm{n}^{2}$
From $\mathrm{a}^{2}=2 \mathrm{~b}^{2}$
$4 \mathrm{n}^{2}=2 \mathrm{~b}^{2}$ $2 \mathrm{n}^{2}=\mathrm{b}^{2}$
b^{2} is even $\rightarrow b$ is even
a and b have 2 as commen factor,
5. Counter Examples

Example:
$\nabla \times P$ (x) is ralse)
Allmultiples of 3 are odd false
counter example :
6 is multiple of three which is even
All odd numbers are divisible by 3. False
counter example:
7 is not divisible by 3 .

- If P is an odd prime, then $\mathrm{P}+2$ is also prime false counter example:
7 is prime odd but $7+2=9$ is not prime.
- The square root of any integer is irrational false counter example :
$\sqrt{4}=2$ rational.

Key concepts:

CHAPTER ONE:
LOGIC.
SECTION 1.1:
Propositions.

- Propositions
- Truth value
- Logical variable
- Logical connectives: \wedge ("and"), \vee ("or")
- Negation ~
- Propositional form
- Truth table
- Logical equivalence
- Logical identities: DeMorgan'shawsand the distributives laws

SECTION 1.2:

The conditional and Biconditional.

- Conditional connectives: \Rightarrow (imphcation)
- Converse and contrapositive
- Biconditional: \Leftrightarrow (if and only if)
- Tautology, contradiction, and contingency.

SECTION 1.4:
Predicates.

- Predicat
- Univarse of discourse
- Bindine
antification: universal $(\nabla \mathrm{x})$ and existential $(\exists \mathrm{Z})$

SECTION 1.6

Proof in Mathematics.
Direct proof

- Contrapositive
- Biconditional
- Contradiction
- Counter example

