Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 1.4

Predicate.

X is even integer : not proposition.
It becomes a proposition only when the value of has been determined.
Set $x=4$, then we have a true proposition
Set $\mathrm{x}=5$, then we have a false proposition
An assertion that contains one or more variables is a predicate
$\mathrm{P}(\mathrm{x}), \mathrm{P}(\mathrm{x}, \mathrm{y})$: is a predicate.
$P(2)$: is a proposition.
$\mathrm{P}(5)$: is a proposition.
The set that we choose the values of x from it is called the University 0

Discourse.

Example:
Let the Universe of discourse be the set of integer\& and let $P_{(X, y)}$ be the predicate "x.y = 12"

P (1,3): "1.3=12": "3=12" false proposition P (2,6): "2.6=12": "12=12" true propostion

Example:

Let $Q(x)$ be the predicate "2. x seven integer" and the universe of discourse be the set of integers.
$Q(x)$ is true for all x in the unverse f discourse
$\nabla \mathrm{x} \mathrm{Q}(\mathrm{x})$: for all x in the universe of discourse $\mathrm{Q}(\mathrm{x})$ hold.
$\nabla \mathrm{x} \mathrm{Q}(\mathrm{x})$: is a proposition.

Example:

$Q(y): 2$ is evenintegers, universe of discourse all integers.
Q (1), $\mathrm{Q}(2), \mathrm{Q}(9) \mathrm{Q}$ (11) : is true.
NOTE: that for all values of $\mathbf{x}, \mathrm{Q}(\mathrm{x})$ is true.

Clarification:

A: "for all values of $\mathrm{x}, \mathrm{Q}(\mathrm{x})$ is true OR hold"
A : is true proposition.
In general: "for all values of $\mathrm{x}, \mathrm{P}(\mathrm{x})$ is true" is proposition.
We denote for all by ∇
A: $\forall \mathrm{x} Q(\mathrm{x})$
A: for all values of $\mathrm{x}, \mathrm{Q}(\mathrm{x})$ is true

Example:

Let Q (x) be the predicate "x.1= x ", and universe of discourse be all real numbers.
$\nabla \mathrm{x} \mathrm{Q}(\mathrm{x})$: "for all values of $\mathrm{x}, \mathrm{x} .1=\mathrm{x}$ ". is true proposition

Example:

Let $\mathrm{P}(\mathrm{x})$ be the predicate " $\mathrm{x} .1=0$ ", and universe of discourse be all real numbers.
$\nabla \mathrm{x} \mathrm{Q}(\mathrm{x})$: "for all values of $\mathrm{x}, \mathrm{x} .1=0$ ". is false proposition But there is a value of x such that $P(x)$ hold.

We denote
There exists : There is By \exists
$\exists \mathrm{x} P(\mathrm{x})$:"there exists a value of x such that $\mathrm{P}(\mathrm{x})$ hid is true proposition

Example:

Let the universe of discourse be the real numbers.
P(x): " $x^{2} \geq 0 "$
Q (x) : " 3.x > 10"

1. $\forall x P(x)$: "for all values of $x x^{2} \geq 0$
2. $\forall x \mathrm{Q}(\mathrm{x})$: "for all values of $\mathrm{x}, \mathrm{x}>10$ "
3. $\exists \mathrm{x} P(\mathrm{x}):$ " there exissa value $\rho \mathrm{x}$ such that $\mathrm{x}^{2} \geq 0$ "
4. $\exists \mathrm{x} \mathrm{Q}(\mathrm{x}):$: there exists a value of x such that $3 . \mathrm{x}>$

True (1)
False (0)
True (1)
$10 "$

Example:

Let $\mathrm{P}(\mathrm{x} y)$ be the predicate " $\mathrm{x}>\mathrm{y}$ " and let the universe of discourse be the set of rea numbers
ν

1. $=\nabla y P(x, y):$ "there exists a value of x such that for all values of y, $x>y \rightarrow$ is false (0).
2. $\exists \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})$: "there exists a value of x and a values of y , $\mathrm{x}>\mathrm{y} \rightarrow$ is true (1).
3. $\forall x \exists y P(x, y)$: "for all values of x, there exists a value of y, Such that $\mathrm{x}>\mathrm{y} \rightarrow$ is true (1).

Example:

Let the universe of discourse be the set integers.
a. $\forall \mathrm{x} \exists \mathrm{y}[\mathrm{x}+\mathrm{y}=0]$: "for all x , there exists a value of y such that $\mathrm{x}+\mathrm{y}=0 \mathrm{O} \rightarrow$ is true (1).
b. $\exists \mathrm{x} \quad \forall \mathrm{y}[\mathrm{x} . \mathrm{y}=0]: \mathrm{l}$ there exists value of x , such that for all of y , $x . y=0 " \rightarrow$ is true (1)
c. $\exists \mathrm{x} \exists \mathrm{y}[\mathrm{x} . \mathrm{y}=15]$: "there exists value of x , and a value of y such that $x . y=15^{\prime \prime} \rightarrow$ is true (1).
d. $\forall \mathrm{x} \nabla \mathrm{y}[\mathrm{x} . \mathrm{y}>0]$: " for all x and for all $\mathrm{y}, \mathrm{x} . \mathrm{y}>0 " \rightarrow$ is false (0).

Example:

P (x,y) : " x.y = 4 "
$\forall \mathrm{x} \exists \mathrm{y}$ P (x,y): "for all x , there exists a value of y such tha \rightarrow is false (0).

NOW:
If $P(x)$ is a predicate then the negation of $\sim x p(x)$ and $-\frac{x}{P}(x)$ is gives by the following :
$\sim[\forall \mathrm{xP}(\mathrm{x})]=\exists \mathrm{x}(\sim \mathrm{P}(\mathrm{x}))$
$\sim[\exists \mathrm{xP}(\mathrm{x})]=\quad \forall \mathrm{x}(\sim \mathrm{P}(\mathrm{x}))$

Example:

Let $\mathrm{Q}(\mathrm{x})$ be the predicate " $\mathrm{x}^{2}>0$ " and le the universe of discourse be the set of integers.
$\nabla \mathrm{x} \mathrm{Q}(\mathrm{x})$: is false (0). $\sim(\nabla \mathrm{x} Q(\mathrm{x}))$: is true
That's mean: $\exists \mathrm{x}(\sim \mathcal{A}(\mathrm{x})) \rightarrow$ (当 $\left.\left[\mathrm{x}^{2} \leq 0\right]\right)$

$\mathrm{a} / \mathrm{b}: \mathrm{a}, \mathrm{b} \in \mathrm{Z}, \mathrm{b} \neq 0$
d. Real numbers (R):
all numbers known.
e. Complex numbers():

Involve all numbers

N	\subset	Z	\subset	Q	\subset	R	\subset	C
Natural								

Example:

1)

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the predicate " $\mathrm{x} . \mathrm{y}=1 \mathrm{l}$ where x and y assume any real numbers.
$\nabla \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})$: "for all x , there exists a value of y such that $\mathrm{x} . \mathrm{y}=1$ " Is false (0).
$\sim[\nabla \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})]=\exists \mathrm{x} \quad \nabla \mathrm{y}(\sim \mathrm{P}(\mathrm{x}, \mathrm{y}))=\exists \mathrm{x} \quad \forall \mathrm{y}[\mathrm{x} . \mathrm{y} \neq 1]$ is true (1).
2)

Let $\mathrm{Q}(\mathrm{x})$ be the predicate " x is prime integer " $\mathrm{R}(\mathrm{x})$ be the predicate " x^{2} is odd integer " and let the universe of discourse be the set of integer.
$\nabla \mathrm{x}[\mathrm{Q}(\mathrm{x}) \Rightarrow \mathrm{R}(\mathrm{x})]:$: for all values of x , if x is prime infeger, then $\mathrm{x} \mathrm{x}^{\prime}$ is odd integer " is false (0).
$\sim[\forall \mathrm{x}[\mathrm{Q}(\mathrm{x}) \Rightarrow \mathrm{R}(\mathrm{x})]]$
$\rightarrow \exists \mathrm{x} \sim[(\mathrm{Q}(\mathrm{x}) \Rightarrow \mathrm{R}(\mathrm{x}))]$
$\rightarrow \exists \mathrm{x} \sim[\sim(\mathrm{Q}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x}))]$
$\rightarrow \exists \mathrm{x}[(\mathrm{Q}(\mathrm{x}) \wedge \sim \mathrm{R}(\mathrm{x})]$
\rightarrow "there exists a value of x such that v sprime integer and x^{2} is even" Is true (1).

