Department of Mathematics

Faculty of Science
Yarmouk University

Discrete Mathematics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 1.1

Propositions.

DEFINITION:
A proposition is a declarative sentence to which we can assign a truth value of either true or false but not both.
Examples:

1. 4 is even number (true) (1).
2. 5 is even number (false) (0).

We will use A, B, C, P, Q, R, to present propositions there letters called 1ogical variables.

- Compound proposition.

We will use connectives to form compound propositions.

1. To connectives AND denoted by \wedge.
2. To connectives OR denated by \underline{V}.
3. To connectives NOT denoted by \sim.

- $\quad \mathrm{A}, \mathrm{B}$ variables:

1. $(A \wedge B) \ldots$ Conjunction of A and B.
2. $(A \vee B) \ldots$ Disjunction of A and B.

Examples:

1. Read this statements and answer following questions.

questions	1 (true)
A: the earth is round.	0 (false)
B: the sun is cold.	1 (true)
C: it rains in Spain.	Answers
questions 0 (false) $\mathrm{A} \wedge \mathrm{B}:$ the earth is round and the sun is cold. 1 (true) $\mathrm{B} \vee \mathrm{C}$: the surn is cold or it rains in Spain. 1 (true) $\sim \mathrm{B}$: the sun is not cold.	

P and $\sim \mathrm{P}$ always have apposite truth value.
Truth table (2^{1}).

\mathbf{P}	$\sim \mathbf{P}$
1	0
0	1

- $\quad A$ and B and $A \wedge B$.

Truth table (2^{2}).

\mathbf{A}	\mathbf{B}	$\mathbf{A} \wedge \mathbf{B}$
1	1	1
1	0	0
0	1	0
0	0	0

- $\quad A$ and B and $A \vee B$.

Truth table (2^{2}).

- $\quad \mathrm{A} \wedge(\mathrm{B} \vee \mathrm{C})$.

Truth table (2^{3}).

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{B} \vee \mathbf{C}$	$\mathbf{A} \wedge(\mathbf{B} \vee \mathbf{C})$
1	$\mathbf{1}$	1	1	1
		1	0	1
	0	1	1	1
		0	0	0

- If two forms have identical truth table then said to be equivalent.
- If A and B are equivalent forms, we write $\mathrm{A}=\mathrm{B}$ and called logically identical.
- LAWS:
- DeMorgan's laws.

1. $\sim(A \wedge B)=\sim A \vee \sim B$
2. $\sim(A \vee B)=\sim A \wedge \sim B$

PROOF:

1. $\sim(\mathrm{A} \wedge \mathrm{B})=\sim \mathrm{A} \vee \sim \mathrm{B}$

Truth table (2^{2}).

\mathbf{A}	\mathbf{B}	$\mathbf{A} \wedge \mathbf{B}$	$\sim(\mathbf{A} \wedge \mathbf{B})$	$\sim \mathbf{A}$	$\sim \mathbf{B}$	$\sim \mathbf{A} \vee \sim \mathbf{B}$
1	1	1	$\mathbf{0}$	0	0	$\mathbf{0}$
1	0	0	$\mathbf{1}$	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$	1	0	$\mathbf{1}$
0	0	0	$\mathbf{1}$	1	1	$\mathbf{1}$
$\sim(\mathrm{~A} \vee \mathrm{~B})$	$=\sim \mathrm{A} \wedge \sim \mathrm{B}$					

2. $\sim(\mathrm{A} \vee \mathrm{B})=\sim \mathrm{A} \wedge \sim \mathrm{B}$

Truth table (2^{2}).

- Distributive laws

1. $A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)$
2. $A \vee B \wedge C)=(A \vee B) \wedge(A \vee C)$

PROOF:

1. $A \wedge(B \vee C \perp(A \wedge B) \vee(A \wedge C)$

Truth table (2^{3})

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{B} \vee \mathbf{C}$	$\mathbf{\wedge}(\mathbf{B} \vee \mathbf{C})$	$\mathbf{A} \wedge \mathbf{B}$	$\mathbf{A} \wedge \mathbf{C}$	$(\mathbf{A} \wedge \mathbf{B}) \vee(\mathbf{A} \wedge \mathbf{C})$
1	1	1		$\mathbf{1}$	1	1	$\mathbf{1}$
1	1	0	1	$\mathbf{1}$	1	0	$\mathbf{1}$
1	0	1	1	$\mathbf{1}$	0	1	$\mathbf{1}$
1	0	$\mathbf{0}$	0	$\mathbf{0}$	0	0	$\mathbf{0}$
\mathbf{Q}	1	1	1	$\mathbf{0}$	0	0	$\mathbf{0}$
0	1	0	1	$\mathbf{0}$	0	0	$\mathbf{0}$
0	0	1	1	$\mathbf{0}$	0	0	$\mathbf{0}$
0	0	0	0	$\mathbf{0}$	0	0	$\mathbf{0}$

2. $\quad \mathrm{A} \vee(\mathrm{B} \wedge \mathrm{C})=(\mathrm{A} \vee \mathrm{B}) \wedge(\mathrm{A} \vee \mathrm{C})$

Truth table $\left(2^{3}\right)$

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{B} \wedge \mathbf{C}$	$\mathbf{A} \vee(\mathbf{B} \wedge \mathbf{C})$	$\mathbf{A} \vee \mathbf{B}$	$\mathbf{A} \vee \mathbf{C}$	$(\mathbf{A} \vee \mathbf{B}) \wedge(\mathbf{A} \vee \mathbf{C})$
1	1	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$
1	1	0	0	$\mathbf{1}$	1	1	$\mathbf{1}$
1	0	1	0	$\mathbf{1}$	1	1	$\mathbf{1}$
1	0	0	0	$\mathbf{1}$	1	1	$\mathbf{1}$
0	1	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$
0	1	0	0	$\mathbf{0}$	1	0	$\mathbf{0}$
0	0	1	0	$\mathbf{0}$	0	1	$\mathbf{0}$
0	0	0	0	$\mathbf{0}$	0	0	$\mathbf{0}$

