Department of Mathematics Faculty of Science Yarmouk University

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun

Section 1.1 **Propositions.**

DEFINITION:

A proposition is a declarative sentence to which we can assign a truth value of either true or false but not both.

Examples:

- 1. 4 is even number (true) (1).
- 2. 5 is even number (false) (0).

We will use A, B, C, P, Q, R, to present propositions there letters called **logical** variables.

• Compound proposition.

We will use connectives to form compound propositions.

- 1. To connectives **AND** denoted by
- 2. To connectives **OR** denoted by
- 3. To connectives **NOT** denoted b
- A, B variables:
 - 1. $(A \land B) \dots$ Conjunction of A and B.
 - 2. $(A \lor B) \dots$ **Disjunction** of A and B.

Examples:

1. Read this statements and answer following questions.

questions	Answers
A: the earth is round.	1 (true)
B: the sun is cold.	0 (false)
C: it rains in Spain.	1 (true)

_			
	question	ns	Answers
	$A \land B$:	the earth is round and the sun is cold.	0 (false)
	$\mathbf{B} \lor \mathbf{C}$	the sum is cold or it rains in Spain.	1 (true)
	\sim B: the	sun is not cold.	1 (true)
× *			

Osama Alkhoun (Mobile: 0796484613)

Math 152

P and ~P always have apposite truth value.

Truth table (2^1) .

P	~ P
1	0
0	1

• A and B and $A \wedge B$.

Truth table (2^2) .

• If two forms have **identical truth table** then said to be **equivalent**.

• If A and B are **equivalent** forms, we write A=B and called **logically identical**.

Math 152

LAWS: •

• DeMorgan's laws.

1. $\sim (A \land B) = \sim A \lor \sim B$ 2. $\sim (A \lor B) = \sim A \land \sim B$

PROOF:

1.
$$\sim (A \land B) = \sim A \lor \sim B$$

Truth table (2^2) .

لريز ا	i tuo).					-
	Α	B	$\mathbf{A} \wedge \mathbf{B}$	\sim (A \wedge B)	~A	~ B	$\sim \mathbf{A} \lor \sim \mathbf{B}$	
	1	1	1	0	0	0	0	
	1	0	0	1	0	1	1	
	0	1	0	1	1	0	1	
	0	0	0	1	1	1	1	
. 1	~ ($(\mathbf{A} \lor \mathbf{E})$	B) = ~ A /	\~B			0)

2.
$$\sim (A \lor B) = \sim A \land \sim B$$

Truth table (2^2)

	h tab	$1e(2^{2})$).		-			
	Α	B	$\mathbf{A} \lor \mathbf{B}$	~ (A ∨ B)	~A	~ B	∧ ~ B ─	,
	1	1	1	0	Ø	0	0	
	1	0	1	0	0	1	0	
	0	1	1	0	1	0	0	
	0	0	0	1	1	1	1	
ľ								

Distributive laws 0

1.
$$A \land (B \lor C) = (A \land B) \lor (A \land C)$$

2. $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

 $(A \land C)$

PROOF:

1. $A \land (B \lor$

Truth table (2^3)

Α	B	C	BVC	A∧(B∨C)	A∧B	A۸C	$(\mathbf{A} \land \mathbf{B}) \lor (\mathbf{A} \land \mathbf{C})$
1	1	.1		1	1	1	1
1	1			1	1	0	1
1	0		Ι	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	7	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Math 152

Truth ta	∨ (E ble (2	$(\mathbf{B} \wedge \mathbf{C}) =$	$(\mathbf{A} \lor \mathbf{B}) \land (\mathbf{A} \lor \mathbf{B})$	$(\mathbf{A} \lor \mathbf{C})$)	
A B	C		A∀(B∧C)	A∨B	AVC	(A ∨ B)∧(A ∨ C)
1 1	1	1	1	1	1	1
1 1	0	0	1	1	1	1
1 0	1	0	1	1	1	1
1 0	0	0	1	1	1	1
0 1	1	1	1	1	1	1
0 1	0	0	0	1	0	0
0 0	1	0	0	0	1	0
0 0	0	0	0	0	0	0
			1			
	C	5				

osana hinn