Department of Statistics Faculty of Science Yarmouk University

SATS 101 Introduction to Probability and Statistics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun Mobíle: 0796484613

Chapter 8 Large-Sample Estimation

Introduction

• Populations are described by their probability distributions and parameters.

- For quantitative populations, the location and shape are described by μ and σ .

- For a binomial populations, the location and shape are determined by p.

• If the values of parameters are unknown, we make inferences about them using sample information.

Types of Inference

• Estimation:

- Estimating or predicting the value of the parameter
- "What is (are) the most likely values of μ or p?"

• Hypothesis Testing:

– Deciding about the value of a parameter based on some preconceived idea.

- "Did the sample come from a population with $\mu = 5$ or p=.2?"

• Examples:

- A consumer wants to estimate the average price of similar homes in her city before putting her home on the market.

Estimation: Estimate μ , the average home price.

A manufacturer wants to know if a new type of steel is more resistant to high temperatures than an old type was.
Hypothesis test: Is the new average resistance, μ_N equal to the old average resistance, μ_O?

• Whether you are estimating parameters or testing hypotheses, statistical methods are important because they provide:

Methods for making the inference

- A numerical measure of the goodness or reliability of the inference

Definitions

• An **estimator** is a rule, usually a formula, that tells you how to calculate the estimate based on the sample.

- **Point estimation:** A single number is calculated to estimate the parameter.

- **Interval estimation:** Two numbers are calculated to create an interval within which the parameter is expected to

Country and the second

lie.

Properties of Point Estimators

• Since an estimator is calculated from sample values, it varies from sample to sample according to its **sampling distribution**.

• An **estimator** is **unbiased** if the mean of its sampling distribution equals the parameter of interest.

– It does not systematically overestimate or underestimate the target parameter.

• Of all the **unbiased** estimators, we prefer the estimator whose sampling distribution has the **smallest spread** or **variability**.

Unbiased Biased	Parameter