Department of Statistics Faculty of Science Yarmouk University

SATS 101

introduction to probability

and statistics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun Mobíle: 0796484613

Chapter 5
Several Useful Discrete Distributions

Introduction

- Discrete random variables take on only a finite or countable number of values.
- Three discrete probability distributions serve as models for a large number of practical applications:
- The binomial random variable
- The Poisson random variable
- The HyperGeometric random variable

The Binomial Random Variable

- The coin-tossing experiment is a simple example of a binomial random variable. Toss a fair coin $n=3$ times and record $x=$ number of heads.

- Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that $\mathrm{P}(\mathrm{H}) \neq 1 / 2$.
- Example: A geneticist samples 10 people and counts the number who have a gene linked to Alzheimer's disease.
- Coin: Person
- Head: Has gene
- Tail: Doesn't have gene
- Number of tosses: $\boldsymbol{n}=\mathbf{1 0}$
- $\quad \mathbf{P}(\mathbf{H}): \mathbf{P}($ has gene $)=$ proportion in the population who have the gene.

The Binomial Experiment

1. The experiment consists of n identical trials.
2. Each trial results in one of two outcomes, success (S) or failure (F).
3. The probability of success on a single trial is p and remains constant from trial to trial. The probability of failure is $q=1-p$.
4. The trials are independent.
5. We are interested in x, the number of successes in n trials.

The Binomial Probability Distribution

- For a binomial experiment with n trials and probability \boldsymbol{p} of success on a given trial, the probability of \boldsymbol{k} successes in \boldsymbol{n} trials is
$P(x=k)=C_{k}^{n} p^{k} q^{n-k}=\frac{n!}{k!(n-k)!} p^{k} q^{n-k}$ for $k=0,1,2, \ldots n$.
Recall $\quad C_{k}^{n}=\frac{n!}{k!(n-k)!}$
with $n!=n(n-1)(n-2) \ldots(2) 1$ and $0!\equiv 1$.

The Mean and Standard Deviation

- For a binomial experiment with n trials and probability p of success on a given trial, the measures of center and spread are:
Mean : $\boldsymbol{\mu}=n p$
Variance : $\sigma^{2}=n p q$
Standard deviation : $\sigma=\sqrt{n p q}$

Example

A marksman hits a target 80% of the time. He fires five shots at the target. What is the probability that exactly 3 shots hit the target?

$$
\begin{aligned}
& \boldsymbol{n}=\mathbf{5} \quad \text { success }=\text { hit } \quad \boldsymbol{p}=\mathbf{0 . 8} \quad \boldsymbol{x}=\# \text { of hits } \\
& P(x=3)=C_{3}^{n} p^{3} q^{n-3}=\frac{5!}{3!2!}(.8)^{3}(.2)^{5-3} \\
& =10(.8)^{3}(.2)^{2}=.2048
\end{aligned}
$$

What is the probability that more than 3 shots hit the target?

$$
\begin{aligned}
& P(x>3)=C_{4}^{5} p^{4} q^{5-4}+C_{5}^{5} p^{5} q^{5-5} \\
& =\frac{5!}{4!1!}(.8)^{4}(.2)^{1}+\frac{5!}{5!0!}(.8)^{5}(.2)^{0} \\
& =5(.8)^{4}(.2)+(.8)^{5}=.7373
\end{aligned}
$$

Cumulative Probability Tables

You can use the cumulative probability tables to find probabilities for selected binomial distributions.
$\checkmark \quad$ Find the table for the correct value of n.
$\checkmark \quad$ Find the column for the correct value of p.
$\checkmark \quad$ The row marked " k " gives the cumulative probability, $\mathrm{P}(x \leq$ $k)=\mathrm{P}(x=0)+\ldots+\mathrm{P}(x=k)$

Example

k	$p=.80$
0	.000
1	.007
2	.058
3	.263
4	.672
5	1.000

Wnatis the pronamonty unat exacny 5 siroms nit une target?
$\mathbf{P}(\boldsymbol{x}=3)=\mathrm{P}(x \leq 3)-\mathrm{P}(x \leq 2)$
$=.263-.058$
$=.205$
What is the probability that more than 3 shots hit the target?
$\mathbf{P}(\boldsymbol{x}>3)=1-\mathrm{P}(x \leq 3)$
$=1-.263=.737$

Example

- Here is the probability distribution for $\boldsymbol{x}=$ number of hits.

What are the mean and standard deviation for x ?
Mean $: \mu=n p=5(.8)=4$
Standard deviation $: \sigma=\sqrt{n p q}$
$=\sqrt{5(.8)(.2)}=.89$

Example

- Would it be unusual to find that none of the shots hit the target?
$\mu=4 ; \sigma=.89$
- The value $x=0$ lies
$z=\frac{x-\mu}{\sigma}=\frac{0-4}{.89}=-4.49$
- more than 4 standard deviations below the mean. Very unusual.

