Department of Statistics Faculty of Science Yarmouk University

SATS 101

introduction to probability

and statistics

Yarmouk University

Second Semester 2009/2010

Done by: Osama Alkhoun Mobíle: 0796484613

Chapter 4
 Probability and Probability Distributions

Basic Concepts:

- An experiment is the process by which an observation (or measurement) is obtained.
- Experiment : Record an age
: Toss a die
: Record an opinion (yes, no)
: Toss two coins
- A simple event is the outcome that is observed on a single repetition of the experiment.
- The basic element to which probability is applied.
- One and only one simple event can occur when the experiment is performed.
- A simple event is denoted by E with a subscript.
- Each simple event will be assigned a probability, measuring "how often" it occurs.
- The set of all simple events of an experiment is called the sample space, \mathbf{S}.
- An event is a collection of one or more simple events.
- Two events are mutually exclusive if, when one event occurs, the other cannot, and vice versa.

The Probability of an Event

- The probability of an event A measures "how often" we think A will occur. We write $\mathbf{P}(\mathbf{A})$.

Suppose that an experiment is performed n times. The relative frequency for an event A is

- If we let n get infinitely large,
$P(A)=\lim _{n \rightarrow \infty} \frac{f}{n}$
- $\quad \mathrm{P}(\mathrm{A})$ must be between 0 and 1 .
- If event A can never occur, $\mathrm{P}(\mathrm{A})=0$. If event A
always occurs when the experiment is performed, $\mathrm{P}(\mathrm{A})$
$=1$.
- The sum of the probabilities for all simple events in S equals 1 .
- The probability of an event \mathbf{A} is found by adding the probabilities of all the simple events contained in A.

Counting Rules

- If the simple events in an experiment are equally likely, you can calculate
$P(A)=\frac{n_{A}}{N}=\frac{\text { number of simple events in A }}{\text { total number of simple events }}$
- You can use counting rules to find n_{A} and N.

Example:

Toss three coins. The total number of simple events is:
$\mathbf{2} \times \mathbf{2 \times 2}=8$

Example:

Toss two dice. The total number of simple events is: $\mathbf{6 \times 6}=\mathbf{3 6}$

Example:

Two M\&Ms are drawn from a dish containing two red and two blue candies. The total number of simple events is: $\mathbf{4 \times 3}=\mathbf{1 2}$

Event Relations

- The complement of an event \mathbf{A} consists of all outcomes of the experiment that do not result in event A. We write \mathbf{A}^{C}.

Example

Select a student from the classroom and
record his/her hair color and gender.
Mutually exclusive; $\mathrm{B}=\mathrm{C}^{\mathrm{C}}$

> A: student has brown hair

B: student is female

- C: student is male
- What is the relationship between events \mathbf{B} and \mathbf{C} ?
- $\quad \mathbf{A}^{\mathrm{C}}$: Student does not have brown hair
- $\quad B \cap C$: Student is both male and female $=\varnothing$
- $\quad \mathbf{B} \cup \mathbf{C}$: Student is either male and female $=$ all students $=$ S

Calculating Probabilities for Unions and Complements

- There are special rules that will allow you to calculate probabilities for composite events.
- The Additive Rule for Unions:
- For any two events, \mathbf{A} and \mathbf{B}, the probability of their union, $\mathbf{P}(\mathbf{A} \cup \mathbf{B})$, is $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Example: Additive Rule

Suppose that there were 120 students in the classroom, and that they could be classified as follows:

	Brown	Not Brown
Male	20	40
Female	$\mathbf{3 0}$	$\mathbf{3 0}$

A: brown hair, $\mathbf{P}(\mathbf{A})=\mathbf{5 0 / 1 2 0}$
B : female, $\mathbf{P}(\mathbf{B})=\mathbf{6 0 / 1 2 0}$
Check: $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$$
=(20+30+30) / 120
$$

$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=50 / 120+60 / 120-30 / 120$
$=80 / 120=2 / 3$

A Special Case

When two events A and B are mutually exclusive, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$ and $\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})$.

	Brown	Not Brown
Male	20	40
Female	30	30

A: male with brown hair

$$
\mathrm{P}(\mathrm{~A})=20 / 120
$$

B: female with brown hair

$$
\mathrm{P}(\mathrm{~B})=30 / 120
$$

A and B are mutually exclusive, so that
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$=20 / 120+30 / 120$
$=50 / 120$

Calculating Probabilities for Complements

- We know that for any event \mathbf{A} :

$$
-\quad \mathbf{P}\left(\mathbf{A} \cap \mathbf{A}^{\mathrm{C}}\right)=\mathbf{0}
$$

- Since either \mathbf{A} or $\mathbf{A C}$ must occur, $\mathbf{P}\left(\mathbf{A} \cup \mathbf{A}^{\mathrm{C}}\right)=\mathbf{1}$
- \quad so that $\mathbf{P}\left(\mathbf{A} \cup \mathbf{A}^{\mathrm{C}}\right)=\mathbf{P}(\mathbf{A})+\mathbf{P}\left(\mathbf{A}^{\mathrm{C}}\right)=\mathbf{1}$
$\mathbf{P}\left(\mathbf{A}^{\mathbf{C}}\right)=\mathbf{1}-\mathbf{P}(\mathbf{A})$

Example

Select a student at random from the classroom. Define:

	Brown	Not Brown
Male	$\mathbf{2 0}$	40
Female	$\mathbf{3 0}$	$\mathbf{3 0}$

A: male

$$
\mathrm{P}(\mathrm{~A})=60 / 120
$$

B: female
A and B are complementary, so that $\mathrm{P}(\mathrm{B})=1-\mathrm{P}(\mathrm{A})$
$=1-60 / 120=60 / 120$

Calculating Probabilities for Intersections

- In the previous example, we found $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ directly from the table. Sometimes this is impractical or impossible. The rule for calculating $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ depends on the idea of independent and dependent events.
Two events, \mathbf{A} and \mathbf{B}, are said to be independent if and only if the probability that event \mathbf{A} occurs does not change, depending on whether or not event \mathbf{B} has occurred.

Example 1

- Toss a fair coin twice. Define
- A: head on second toss
- B: head on first toss
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=1 / 2$
$\mathrm{P}(\mathrm{A} \mid$ not B$)=1 / 2$
$\mathrm{P}(\mathrm{A})$ does not change, whether B happens or not..
A and B are independent!

Example 2

- A bowl contains five $M \& M s ®$, two red and three blue.

Randomly select two candies, and define

- A: second candy is red.
- B: first candy is blue.
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(2$ nd red $\mid 1$ st blue $)=2 / 4=1 / 2$
$\mathrm{P}(\mathrm{A} \mid$ not B$)=\mathrm{P}(2$ nd red $\mid 1$ st red $)=1 / 4$
$\mathrm{P}(\mathrm{A})$ does change, depending on whether B happens or not...
A and B are dependent!

Defining Independence

We can redefine independence in terms of conditional probabilities:
Two events A and B are independent if and only if

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A}) \quad \text { or } \quad \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B})
$$

Otherwise, they are dependent.

- Once you've decided whether or not two events are independent, you can use the following rule to calculate their intersection.

The Multiplicative Rule for Intersections

- For any two events, \mathbf{A} and \mathbf{B}, the probability that both \mathbf{A} and \mathbf{B} occur is
$\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B}$ given that \mathbf{A} occurred $)=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B} \mid \mathbf{A})$
- If the events \mathbf{A} and \mathbf{B} are independent, then the probability that both \mathbf{A} and \mathbf{B} occur is
$\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})$

Example 1

In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?
Define H: high risk N : not high risk $\mathrm{P}($ exactly one high risk $)=\mathrm{P}(\mathrm{HNN})+\mathrm{P}(\mathrm{NHN})+\mathrm{P}(\mathrm{NNH})$
$=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{N}) \mathrm{P}(\mathrm{N})+\mathrm{P}(\mathrm{N}) \mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{N})+\mathrm{P}(\mathrm{N}) \mathrm{P}(\mathrm{N}) \mathrm{P}(\mathrm{H})$
$=(.1)(.9)(.9)+(.9)(.1)(.9)+(.9)(.9)(.1)=3(.1)(.9)^{2}=.243$

Example 2

Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?
Define H: high risk $\quad F$: female
From the example, $\mathrm{P}(\mathrm{F})=.49$ and $\mathrm{P}(\mathrm{H} \mid \mathrm{F})=.08$. Use the
Multiplicative Rule:
$\mathrm{P}($ high risk female $)=\mathrm{P}(\mathrm{H} \cap \mathrm{F})$
$=\mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{H} \mid \mathrm{E})=.49(.08)=.0392$

The Mean and Standard Deviation

- Let x be a discrete random variable with probability distribution $p(x)$. Then the mean, variance and standard deviation of x are given as
Mean : $\mu=\Sigma x p(x)$
Variance : $\sigma^{2}=\boldsymbol{\Sigma}(x-\mu)^{2} p(x)$
Standard deviation : $\sigma=\sqrt{\sigma^{2}}$

Example

- Toss a fair coin 3 times and record x the number of heads.

x	$p(x)$	$x p(x)$	$(x-\mu) 2 p(x)$
0	$1 / 8$	0	$(-1.5) 2(1 / 8)$
1	$3 / 8$	$3 / 8$	$(-0.5) 2(3 / 8)$
2	$3 / 8$	$6 / 8$	$(0.5) 2(3 / 8)$
3	$1 / 8$	$3 / 8$	$(1.5) 2(1 / 8)$

$\mu=\sum x p(x)=\frac{12}{8}=1.5$
$\sigma^{2}=\Sigma(x-\mu)^{2} p(x)$
$\sigma^{2}=.28125+.09375+.09375+.28125=.75$
$\sigma=\sqrt{.75}=.688$

Example

- The probability distribution for x the number of heads in tossing 3 fair coins.

- Shape? Symmetric; mound-shaped
- Outliers? None
- Center? $\mathrm{m}=1.5$
- Spread? s = . 688

Key Concepts

I. Experiments and the Sample Space

1. Experiments, events, mutually exclusive events, simple events
2. The sample space
3. Venn diagrams, tree diagrams, probability tables

II. Probabilities

1. Relative frequency definition of probability
2. Properties of probabilities
a. Each probability lies between 0 and 1 .
b. Sum of all simple-event probabilities equals 1 .
3. $\mathrm{P}(\mathrm{A})$, the sum of the probabilities for all simple events in A

III. Counting Rules

1. $m n$ Rule; extended $m n$ Rule
2. Permutations: $P_{r}^{n}=\frac{n!}{(n-r)!}$
3. Combinations: $C_{r}^{n}=\frac{n!}{r!(n-r)!}$

IV. Event Relations

1. Unions and intersections
2. Events
a. Disjoint or mutually exclusive: $P(A \cap B)=0$
b. Complementary: $P(A)=1-P(A C)$
3. Conditional probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
4. Independent and dependent events
5. Additive Rule of Probability:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
6. Multiplicative Rule of Probability: $P(A \cap B)=P(A) P(B \mid A)$
7. Law of Total Probability
8. Bayes' Rule

V. Discrete Random Variables and Probability Distributions

1. Random variables, discrete and continuous
2. Properties of probability distributions

$$
0 \leq p(x) \leq 1 \text { and } \sum p(x)=1
$$

3. Mean or expected value of a discrete random variable:

Mean : $\mu=\sum x p(x)$
4. Variance and standard deviation of a discrete random
variable:

$$
\begin{aligned}
& \text { Variance }: \sigma^{2}=\Sigma(x-\mu)^{2} p(x) \\
& \text { Standard deviation }: \sigma=\sqrt{\sigma^{2}}
\end{aligned}
$$

