Yarmouk University
Faculty of Information Technology and Computer Sciences
Department of Computer Information Systems

Software Engineering
CIS 240

| daLan] 8331'
Mobile: 0774854415
E-mail: osa_alkhoun82@yahoo.com

pld Anii
4 Aalaial) paal gall agd o (Ul sac Lial (3lusall 138 Gas i
A salasy) ARl Cal Leagdl dalay e il ay W 138

Chapter Two
@t’d\ Jizasll

Software Processes

Glina jll Alalles

Software Processes (Chapter 4 from the textbook)
(S (el Y Jeaill) i sal) Aallae
Objectives
ity
o To introduce software process models

Cilina) dallas 3l ppail
e To describe Some generic process models and when they may be
used
23250 3 e g alal) allaall Cilasaral ans Caa sl
o To describe outline process models for requirements engineering,

software development, testing and evolution

skl
o To explain the Rational Unified Process model
A gall @M\Mu\ CJ)AJW}’@.A}H
e To introduce CASE technology to support software process activities
Gliaa pall Aallas Gl acal O gulal) 3o Liay lina joll dria 4585 (08
Topics covered

(a3 pudal gal)

Cilimaall dallas asaliai o

Software process models

Process iteration

5 Sl dalladll
e Process activities
dallaall cillalis o
¢ The Rational Unified Process
53a gall diilaial) daladll o

o Computer-aided software engineering
G gulall Baclive ilina pll At

o Agile development methods and processes.

Axg) ol Clilee 5 35k o

The software process
il sl dallaa

« A structured set of activities required to develop a software system.
Major activities or stages include: Requirements, Design,
Implementation, Testing, and Deployment.
dalall s cldaliall il) Al g olat callats cillalial) (e dalaiall de senall

JL».':E&\}!\} c‘)_.ﬁ'a\}“cé:\,\laﬂ\ ca.g.uaﬂ\ cﬁw\ UM 4,).*\3‘)}\

« Each stage of those listed may have one or more sub stages. For
example, Requirement may include: communication, elicitation,
specification, and verification. Design may include architectural and
detail design.

B Gl QB Qo Sl 1 5l Ao s e cand ot il o34 e dla e JS

Jaaldi 5 40 jlazall (panaty 28 (::\Amﬂ\ .38l g ccliial gall ¢ puzdll (JlaltV¥) :peaaty
avanal

« Insome projects, a stage maybe shortened, but it can never be ignored.

Ledala oy o (S Y (ST 63 el Al all (S5 Lar) ¢ o L) iany B

Framework Activities; different terminologies
dalisLl) clathiaal) ccitaliil))
. In different books or references, some of those processes may be

mixed, combined, or have different names.
elansd @lliai g ¢aand cdalds 88 ciladlaall elli (o) dilisall aal jall of cosll 3,

al
o Communication

iy,
. Planning

Lol

« Modeling (Design and specs)

Qidaill cilllia o

- Analysis of requirements

- Design
?:"A“'a'd‘ o

(uaaﬂ\)é:\..\kﬂ\)cugj\ o

« Construction (Implementation and testing)
« Code generation
Al 34000 Al g3
 Testing

« Deployment

Umbrella Activities
ALaLid) cllaliaty
. Those are considered as — secondary processes. Some projects may or
may not include them.
Y sl agianaii () (Say a Ll any 4 A gD Aalladll - o8 el
. Software project management
QL}M).\S‘ @)L&I}A EJ\JJ °
. Formal technical reviews
Ayl A Cilaal yall
. Software quality assurance
Glaa jll 3 sall 285,
. Software configuration management
Gl yall iy 233,000
« Work product preparation and production
C.\.\Aﬂ b\.\...a.\l\ 9l el Jae
. Reusability management
alaaiuyl sale) 3 la) o
« Measurement

. Risk management

Generic software process models
dalall il gl dgdlea M
The waterfall model: Separate and distinct phases of specification and
development. Does not go to the next phase until completing the
current phase.
sl) cady Yy gkl 5 il gall 5 jiaiall g Aleaiiall Jaljall :JSUEN #30
Adlall dla el JLS) s AU
« Evolutionary development (Prototyping).
(9 5l s k) kel
« Specification, development and validation are interleaved. Develop
“prototypes” for customers to see and verify.
Letirs) ol 30 M 91 it s Al By e cclicalpall o
Lee (B3l

« Component-based software engineering
Al Sall e sadizall Ciliae il duaia
« The system is assembled from existing components off-shelf
components.
3 alal) LSl 583 ga sall LTl (e plana pllaill o
o There are many variants of these models e.g. formal development
where a waterfall-like process is used but the specification is a formal
specification that is refined through several stages to an implement-
able design.
IO Falee e ooy s - ey Sl Jlia g 3 _puaiall 2 3aill o3a (pe apall llia o
il e 83 & A5 ya 0585) Fpansy il o ¢ 55 llaal sall () 23505 il
Gabill e 5ol apenail)

The Waterfall Model

Communication

project initiation fl—gul Planning
requirement gat heri estimating
scheduling
tracking

¥ Modeling
analysis
design

We don’t go back to a stage once it is completed, and “usually” we don’t

—>

o) i

Constructio

code
test

Deployment

support
feedback

start a stage until the previous stage is completed.
?u.aul\d;ﬂ\ UJS.\L;\;MA)AJ c«.l.ﬁ\(aby "'5.3\.9"5 6&353&&.&: ;\L)A]\ L;‘DJ}’J\(A-UY
w.. e

Waterfall model phases

« Requirements analysis and definition

System and software design

delivery —p-

JOLES panali Jal

Ly =y lllaiall Jolas

Uil 5 eyl arana

« Implementation and unit testing — developers tasks.
u:\)ju‘ Q%—uaaﬂ\ﬁh}jé:\._\jaﬂ\
« Integration and system testing- testers tasks.

« Operation and maintenance. Customer support and Customer service

tasks.

requirements.

AL Alead Slaga s AL acd Dl 5 Sllaal)
o We use the waterfall model when we have fixed, stable and known

e il gl 2l o JSLie) sladld @llin & oS Ladie JOLEN aganal aladial ol

M}JM

o The main drawback of the waterfall model is the difficulty of

accommodating changes after the process is underway. One phase has

to be completed before moving to the next phase.
A jad) s al) Aadlaa dm il i B yaam g JOLEN 3 pail i) il
(Al dealal) Al jall) JLEsY) J8 QeSS of g 3aal 5 A je (ALY

Waterfall model problems
L) avanalt JSLiia
« Inflexible partitioning of the project into distinct stages makes it
difficult to respond to changing customer requirements (not suitable
for unstable requirements).
5 e 30 G e Jan 5 Sacial el 1 g 5 piall 5 50 il il
(5 Einne sid) Sliall Rl gl (55330 i
o Therefore, this model is only appropriate when the requirements are
well-understood and changes will be fairly limited during the design
process.
u)ﬁuu\)az\aﬂ\}a:\;d&uduq}@nuw\ u)ﬁum.bsﬁeq)mcd}oﬂ\ Jaa M
pranaill dolac L0 Tas 53 sane
« Few business systems have stable requirements. ‘
(D33 e (5 giat V) 37 e Slillaia Led S HA)) Aadail jany
o The waterfall model is mostly used for large systems engineering
projects where a system 1s developed at several sites. (Such as space
or govt projects).
A allaill {1 s o jliiall 35S Aadast) diig Callad) 3 anding DA 23 gai)
(e sSall ay L) ol eliadl) Jia) 4Bl o 330 oy sha

Evolutionary development
« We want the software to “evolve” to its final form “requirements are
not completely known, or we need to verify them with the customers.
Zliss o b e JalSIL ot ol el el LdSa) 1Bk of sl n 3
L ae Lol
o Exploratory development: The Objective is to work with customers
and to evolve a final system from an initial outline specification.
Cildaal ga (g Sl plai gl s (LI g Jamy o aagl) s oo i) skl o
(sbdl) dlee o 5 (e g adle 5 IS0 Jaall) 0 5Y) Aadlal)

« We should start with those requirements that are well-understood
and agreed upon and then add new features as proposed by the
customer.

sns e GUEYI o5 Ll g i S e seda 055) g ctlblaial) By fosi of cony o

O30 J8 (e Ayl (A LaS Baaa Gl e Cauai @l

o Throw-away prototyping: The objective is to understand the system
requirements.

. We may start with poorly understood requirements, and then build
prototypes to clarify what is really needed.
Lo a5l 3laill iy (e g ¢ (Aasgie)) agdll Apu clillaially fas o) oSy

Aaliag ng'ﬂ\

Evolutionary Models: Prototyping ‘
A9V Zagalll 1 ghail) avalial

Quick plan

Communicatio

Modeling
Quick desig

Deployment
Delivery
& Feedback

Construction
of
prototype

Evolutionary development
o Problems
JSU)
« Lack of process visibility (We don’t have the complete
requirements and hence we are not sure how much resources we
may need, or of the project will be a successful one);
e oS oSl 1 L (e g AL clllaiall ellia Y Ladie) dolaad) & suia g4 o
« Systems are often poorly structured (because they evolve and

change continuously).
Jshll () (AL a3 83 Jand) (s IS0 aY) e] b ol Aalas¥)

(et IS5 (585 el
e Special skills (e.g. in languages for rapid prototyping) may be
required.
el il - el e Jlia) A stha) 5S5 of (Sa dalal) O jleall o
(@)‘.‘J\ ‘éjﬂ\
Evolutionary development
skl g ghatl)
o Applicability
Gubkill o

« For small or medium-size interactive systems;
o sid) o5 ueall Aleladl) Sl o
« For parts of large systems (e.g. the user interface);
(il dgaly - @l o Jiag) 5usll Ada¥l o) 32 o
+ For short-lifetime systems.
mald L lal) s ddai™l e
« Prototyping can be used in initial stages as a way of collecting
requirements. (Customers may find it easier to make comments on
actual product and not just papers or documents).
ol 3l collaiall pand (5,00 20 Y ol jall 8 st of Sy (JdY) zasalll o
S G e dadd il g dedll el e clidail) elay) Jeld) e adl | sang off Sy
(sl

Process iteration
5 Sall dallaal)
« System requirements ALWAYS evolve in the course of a project. As a
result, process iteration where earlier stages are reworked is always
part of large systems’ processes. (MS Windows & Office continuously
have updates, newer versions, batches and bug fixes).
dalall Ol Cum dallaall) S5 AagiiS & g piiall dae ol skt Laila plaill cilllaie
el ol 5 s s s pSile) Sl Aalail) lilae (30 ¢ 30 Ll 823s A
,(;LEQI\ dallea y ilibis) chas Zosd ¢ paliina JE Glaaadl) Lagl A<l
o [teration can be applied to any of the generic process models.
Laladl dallaall (et) anabiai (o gh I 38 of oSy IS
o Two (related) approaches
(35)«:) s S .

(sl sladl okl o

+ Incremental delivery;

« Spiral development.

Incremental delivery

(150) (gl 51 palel

« Rather than delivering the system as a single delivery, the
development and delivery is broken down into increments with each
increment delivering part of the required functionality.

U< 0585 350 1) QS paal) ol gl em i€ L) oo 0 Yy
sl Al 5l a0 3 alui 50035

« User requirements are prioritised and the highest priority requirements

are included in early increments.
5_Saall a3 8 diaaie Ao Y1 A 65V caldlaiall 5 aadiia) colllaial 48y,

o Once the development of an increment is started, the requirements are
frozen though requirements for later increments can continue to
evolve.

laly H lallaiall el aa sraaa ¢ oS Gldhaiall ¢ o phail) 304 3 e 2l o Ladie
skl Jual 55 o (S 3 ALl

software functionality and features

The Incremental Model

increment # 1

G4 5 ((gisadl)) apaatl)

increment #n

) L delivery of
increment # 2 ° nth increment

delivery of
2nd increment

delivery of
1st increment

project calendar time

Incremental development advantages

G A g ghatl) licea

o Customer value can be delivered with each increment so system
functionality is available earlier.
G 5 35 g oLl Al 13083035 U5 ol of (S (s M) el
« Early increments act as a prototype to help elicit requirements for later

Increments.

3 aliall colaty 51 cltlaiall ¢ 1 33 e saclusall sl 23 i€ 3 Suall claly 30 Jaxi o
o Lower risk of overall project failure.

dlall g 5l Qi) LAl Qi

o The highest priority system services tend to receive the most testing.

DL Y)) daad sl cileasd JeNI 40

Spiral development
(sl) igstall ol
o Process is represented as a spiral rather than as a sequence of activities
with backtracking.
(gl) el Faial) e ae Ul Aluds cye Yau (SIS Aliaa dallaall
o Each loop in the spiral represents a phase in the process.
Aallaall 8 sy Jia W) B 36l JS
o No fixed phases such as specification or design - loops in the spiral are
chosen depending on what is required.
Lo o adina jliidl s sl 6 clilall - aveail) o cldal ol Jia 455 Jal 30 Y
Gsthaa s
o Risks are explicitly assessed and resolved throughout the process.
(This is the main difference from the Incremental model).
0o el DAY 138) Aadleal) el 4S8 Leda a5 prudal IS 385 jUadY)
(253 el 53l 23 gaill

Spiral model of the software process
Gl) dallaal (216l) AgHall (Zasedl)) aramadl)
A

Determine objectives,
alternatives and
constraints

Evaluate alternatives,
identify, resolve risks

Risk
analysis

Risk
analysis

Risk
analysis

Risk
REVIEW analysis

Requirements plan
Life-cycle plan

Opera-
tional
protoype

T T
Simulations, models, benchmarks

Concept of
Operation

Product
design

requirements

Detailed
design

Development Requirement
plan validation

Unit test

Integration
and test plan

Integration

Plan next phase test

Acceptance
test

Develop, verify
next-level product

Service

Evolutionary Models: The Spiral
(ol (Agilad) o (g ohail) avalial
planning
estimation
scheduling
risk analysis

communication = el
\ (("’)) o
e

deployment .
construction

delivery code
feedback test

Spiral model sectors
(Foiiall) dslh aranait) cile Ui
« Objective setting
OSall e sa 50 o
+ Specific objectives for the phase are identified.
18 jaa S8 Aa el Al Calaal) o
« Risk assessment and reduction
lemddiy Hhlaall aii
« Risks are assessed and activities put in place to reduce the key
risks.
Dhlaall sda Jlal lSall 8 aa ¢ Gl 5 Leanl a3 Hlaliall o
« Development and validation
@aadlly kil
« A development model for the system is chosen which can be any of
the generic models.
Lalall 3l (e s 0585 Ladie o lial oy pllaill) ghaill =3 0ai @
« Planning
Llad

« The project is reviewed and the next phase of the spiral is planned.
el Jalade gl Gadlal) Als yall g Atna) o g 5 plall @

General process activities

Laladf Lalleal) clabis
o Software specification

Gl panadi
o Software design and implementation

Q\Tg';ﬁw)él‘ d“u" ..j ‘ -~ X .

o Software validation
o Software evolution

el nshki o

Software specification
Gl) pauadl
o The process of establishing what services are required and the
constraints on the system’s operation and development.
aaill kg Cllae e gl 5 cleadd) cililhiie 4pale 48 jral dallaall Gl
e Requirements engineering process
Aalleal) dodia cilllia o
+ Feasibility study;

s sl Al)2
« Requirements elicitation and analysis;
Jalatll g Elaay) cilllaia o
« Requirements specification;

uazuaﬂ\ Slalhaia

. 1 e (il Ll

« Requirements validation.

The requirements engineering process

Feasibility
study
Requirements
specification

Y
Feasibility

report

datlaall dwainy cilulhtia

Requirements
elicitation and
analysis

Requirements
validation

System
models

User and system
requirements

Y

»| Requirements
document

Software design and implementation
e sl (Gaadal g apanal
o Software design: To design a software structure or model that realises
the specification; The design is the link between the requirements and
the code (The blueprint such as the one used in buildings).
0553 praaill tliial gall @l) 23 sai sl Cilima sl CaS 5 aranall i Cilina sl agaai o
b pasineal) Jia Taladall) (oaandl 35S0) 5kl g cibillaial) (s o sl Al
(s
o Implementation: The process of converting the system specification
into an executable system (i.e. the code or the software).
AT G) dudull Jid GUas) aUsill cilieal ge i st SIS e Aallaall Gudaill o
(bl F (o) S) 3
o The activities of design and implementation are closely related and
may be inter-leaved.

Lagaiany G (U 6S0 3B 5 i Ja) i Lagin Gudaill 5 apenatll illalis

Design process activities
il datlae cildalis
o Architectural design

s il panaddll

o Abstract specification

o Interface design
:"GA\JM paal X
o Component or detail design
Jualilll ol s Sall apanai o
o Data structure design
o Algorithm design
aﬂ.aj)\jij\ a.m.\aﬁ °

The software design process

Gliaa) aanal datlaa
Requirements
specification

Design activities

Data
structure
design

Interface
design

Abstract
specification

Architectural
design

Component
design

Algorithm
design

Y

Y Y Y Y Y

System Software Interface Component strgzizre Algorithm

architecture specification specification specification I specification
specification
Design products
Programming and debugging
slladl &\A-«AS 9 Aa J,d\
o Translating a design into a program and removing errors from that

program.
el) 138 (e e UndY) Cada g el)) apanaill das 35
o We use programming or developing to refer to the implementation
stage.
Gl Al o (N il ol gl dse il padis
o Programming is a personal activity - there is no generic programming
process, but there are coding standards (such as naming conventions).
A jlme 5t llia (K1 e Aoy dallae dllia Gul — (alaiY) Lalis a dasesll
((Sanll e 3V Jie) (Apul)
Programmers carry out some program testing to discover faults in the
program and remove these faults in the debugging process (i.e. unit
testing).
Sany s gali ol 3 (sUad Y1) o spall CRLEISY JLEAY) el s (e pianl) (g sma aall 26y o
sany Al inarg) (sUadY)) iil) dilee 8 (slhdYT) gl oda A1) e
(oY)

The debugging process
($UadY) sl il (Ades) Apllae

Design Repair Re-test
error repair error program

Software validation
el daua (pa hal)
. Verification and validation (V & V) are intended to show that a
system conforms to its specification and meets the requirements of the
system customer.
Jiliy aliial g ae (38 53y Al A3y) 3 il (V & V) sl s daall (e @il
LB sy Sl
. Involves checking and review processes and system testing.
il sl 5 3831l g daal el Clilee ot
. System testing involves executing the system with test cases that are
derived from the specification in order to be processed by the system.
oS il sall (po AEida () 55 il dmaia g Uil 34 ey WUl lsdl
Al Aatiaa (oS3
. Validation and verification occurs in the requirement stage while
testing occurs within or after the implementation stage.
Aa e 22 gl G HLEAY) Caang Levie cllliall A je & (38al) 5 Goaaill aany
kel

Testing stages
oaadll Jal
o Component or unit testing : Individual components are tested
independently;
e JS5 (Lepad) W lia) by 40 il il Sl jpanidll saa g o CliSall
« Components may be functions or objects or coherent groupings of
these entities. Usually done by developers.
ady Bale | LS a2gd ASulaie cilrand ol Calaal ol Cailla g) o5 o (S il Sall
O shall JMA (e b Sl
o System testing: Testing of the system as a whole. Testing of emergent
properties is particularly important. Usually done by local company
testers.
L Jlad] o Sale Tas degall A8l ailiadd) sl JSS Gl sl callill jasd
Adadl 48,30 cilaasliy
o Acceptance testing: Testing with customer data to check that the
system meets the customer’s needs. Usually done by customers or
independent testers.
dhBale sl clala il aUaill 1 ol @Al ¢ s 3l i JUA) gl sl o
il cilaaldll f Gl 3l U8 G o Slad

The testing process

Component System

(Acceptance
testing testing

testing

Testing phases

Requirements System
specification specification

waadll Ja) ya

System Detailed
design design

System Sub-system Module and
Acceptance
integration integration unit code
test plan
test plan test plan and test

Y Y Y

Acceptance System Sub-system
test integration test integration test

Other types of testing

Cila gadl) (e 5 Al £ i
Unit or white box testing (i.e. component testing).
(Sl JUERY) AT Jirarg) pan) Gsaieall JUAN lsasy
Black box testing (can be part of system testing).
(Al L) e s a (0585 OF (Say) 25 G saiall SLisl o
Integration testing (related to system testing).
(AUl sl e Jadiye) JalSiall (Uanill) SLEaY! o
User Interface testing (can be part of system testing).
(PUall SLER) (g o 0 0585 OF (Sa) padiusall dgal s (pand) LAl o
Alpha and Beta testing (can be part of acceptance testing).
(sl LR e e a8 Of (Sa) s T jlia)

Software evolution or maintenance

i) dlua gf gl
Software is inherently flexible and can change.
0 O (Sarg 0 e Lehal el
As requirements change, through changing business circumstances,
the software that supports the business must also evolve and change.
Jaall e i) eyl (Sl Janll Cogpla yust O cclllaiall yus o
ity sl of Ll cang (AS)
Although there has been a mixing between development and evolution
(maintenance) this is increasingly irrelevant as fewer and fewer
systems are completely new.
Ll A8e Cand o3a (Llpall) skl 5 skl (o Lala ellin 0 e a I o
aan IS8 5 shaall Aadaill) 5 (e 253 5a pUaS (e) Dbpall Jady 3 ghaall

System evolution

Define system Assess existing Propose system Modify
requirements systems changes systems

e gal) (Adlpa) gkt

Existing New
systems system

The Rational Unified Process
Saa gall Agilaial) dallaal)
e A modern process model derived from the work on the UML and
associated process.
2S Ll Zalladll s UML e Janll (g (Gidia Ripaal) dalladll zisai
o Normally described from 3 perspectives
Gl st A e dlle Citiay o
« A dynamic perspective that shows phases over time;
« A static perspective that shows process activities;
« A proactive perspective that suggests good practices.
saall Glo jladl ABNA (e C_)".\s:m Lﬁj\ ‘_Acbﬂ\ J).La.ud\ .

RUP phase model
LaaY) ddhaial) Aadaall Jal ja 73 ga

< Phase iteration

C I — ey

Inception Elaboration Construction Transition

RUP phases

Lol Adhial) Aatlaall Jal s
o Inception
gl o
 [Establish the business case for the system. ;
eM\uAZS)ﬁJ\LM}WU .
o Elaboration
il
« Develop an understanding of the problem domain and the system
architecture.
AL 0 5 RIS el gl s o
o Construction
cu-}j\ °
« System design, programming and testing.
oLyl aadll gdaa il ceU:':ﬂ\ praaal e
o Transition
(Jsaall) Jamyl
« Deploy the system in its operating environment.
Al cilleall 8 SUaill a5 e
RUP good practice
A Laal) Aatlaall Baall el laall
o Develop software iteratively
(5)) @S JR5 Clae pll jashad
o Manage requirements
Gllliall 3 la) o
o Use component-based architectures
4 jlaxal) e saaiaal) G Sall aladsial o
o Visually model software
m IS (5SSl £3 e
o Verify software quality
Clse) dge 5 Ban3
o Control changes to software

Gl e 3ohandl yad o

Static workflows

OShad) Jand) g8

Workflow
Jand) (b

Description
Caa gl

Business modeling

The business processes are modelled using business use
cases.

ol pms AUsa & gan die Janl) 23 e 228055 48 80 Clilee
Actors who interact with the system are identified and use
Requirements cases are developed to model the system requirements.
kil Dkl Al CUSEA () gaading 5 () gaang aldailly) sle iy (pall) sliad)
Alaill clllaia JCUEA)
A design model is created and documented using
. . architectural models, component models, object models
Analysis and design
wsonil) 5 sl and sec.luence.m.o(%els. S o
QL}}SAM GJLQ.: M:Uw\ GA\A.J\ ?\M\ Y L."Iu,} ?:\ma.\!\ T
Aluluiall 2 3lai 5 CalaaY) 3l
The components in the system are implemented and
structured into implementation sub-systems. Automatic
Implementation code generation from design models helps accelerate this
Gkt process.
BJég.&S\dﬁ‘@cﬂ\wyljﬁﬁgjekﬂjéﬁew\gﬁujﬂ\
Alaal) 52 (@)uﬂ) Jhaaf é‘; KT (u.uaﬂ\ C.JLA.\ %) US(\
Testing is an iterative process that is carried out in
Test conjunction'with impl.ementation. System testing follows
(SR andl the completion of the 1mplemegtat10n.))
~ DL il e Jai Y1 VA (e 245 4 51 S5 (Aallas) ilee LAY
Gl JS) iy AUl
A product release is created, distributed to users and
Deployment installed in their workplace.
oLy 4S5 Opadinsall (M dny)55 a5 a5 eASL) o5 (oAl priiall (33U il

pelec adisa A

Configuration and
change management

i il 5 sl 3 1)

This supporting workflow managed changes to the system
(see Chapter 29). ‘
(O35l 5 gl Gl ol) Uaill Jaal) (3835 5855 ,)) a3y 138

Project management

This supporting workflow manages the system
development (see Chapter 5).

gsosal 8 (eall Jeaill laif) aUaill y glail Jaal) (30355)13) acy 138
This workflow is concerned with making appropriate

Environment software tools available to the software development team.

A A B 58 sall Clmajall il ol () aina ae Jandl (3330 g 02

Sl)y glai (30 8)

Computer-aided software engineering CASE
Qoulal) o dadinall Siliaa) duia
o Computer-aided software engineering (CASE) is a software to support
software development and evolution processes (Example, .NET IDE).
Dby Ol il sk sl Clisa 3y (A G gulall o Sadizall Clise pall duaia
(NET IDE leale Jlas) (Aadladll) cilleal)
« Activity automation
Ll aial
Graphical editors for system model development (such as UML,
NET, Eclipse, etc);
(Eclipse
- Data dictionary to manage design entities (OO design tools);
(g sal) QLK arana’ i gal) apaaill LS 3 laY bl (g gald o
« Graphical Ul builder for user interface construction (.NET, Eclipse,
etc.);
(NET, Eclipse) paiuall dgal 5 olial Liliy o3 dna g) podisall dgal g o
« Debuggers to support program fault finding;
« Automated translators to generate new versions of a program (such

as Installers).
(S ke Jie) mali nll (e Baas Feus 2 g AN Clles il o

CASE technology
Gomlall o Saainal) cilipa) ddih ks
o CASE technology has led to significant improvements in the software
process. However, these are not the order of magnitude improvements
that were once predicted
dallaa 8 daled) cilival)) @l G gulad) e saaiaall Cilias ull dunia il
Gk gia (55) dpaal 53 ligend (bl Cad o oJla Al e il)
« Software engineering requires creative thought - this is not readily
automated;

A gy 4tiail 2y W 138 - pane S8 Callat il) Aria o
« Software engineering is a team activity and, for large projects,
much time is spent in team interactions. CASE technology does not
really support these. (i.e. the personal activities, Some tools can be
used to work as a communication media between project team
members, project or defect tracking tools).
e\ 3 oy S g 5 by jltiall g o358 Dol 58 Cilyma ol i
AT e s) Ea o3 ae i Y Cplall e acieall Cilina jal) duia 4 3y il
& sriall Jlail Jails oS Jaall axainsd () ¢Syl a1 (amy cdpadidll i)
_(Q\Jf‘i\ iy (gl JIAd) o g sl (5 5 eloac| o

CASE classification
Goalal) o fadinal) Cilina pll dwaiy Ciiial
« Classification helps us understand the different types of CASE tools
and their support for process activities.
G osulall e sadizall Gl) dwxia <l ool £ 53l G (330 agd e aely Caiall
Aallaal) il pe s il
« Functional perspective

sl kil

« Tools are classified according to their specific function.
o Process perspective
(leall) Aalladll sk
« Tools are classified according to process activities that are
supported.
dallaall Cillalis acal ligds (s’ <l Y o
« Integration perspective
el sl
« Tools are classified according to their organisation into integrated

units.
Leilan 5 Jelsal dadaiall s Cateat ol) @

Functional tool classification

380 gl a9 Ciiuat

Tool type
a1 ¢ 5
Planning tools
.E:\M‘ &L}\Jdi

Editing tools
‘)..3‘);:\” Q‘jJi
Change management tools
M\ EJ\A‘\ Q\jdi

Configuration management
tools
il 5 ,la) <l gl

Prototyping tools
:\7}3}‘\2{\ CJLAJ\ Q\}Ji
Method-support tools
Gkl - aca) ol
Language-processing tools
Clalll - e &

Program analysis tools

bl Qs <l gl

Testing tools
(oaadl) LYl @l g
Debugging tools
cUaay C“““"‘ <l }Ai
Documentation tools
G sill <l gl

Re-engineering tools
Aaigl) sale) <l gol

Examples
Ll

PERT tools, estimation tools,
spreadsheets

Text editors, diagram editors, word
processors

Requirements traceability tools, change
control systems

Version management systems, system
building tools

Very high-level languages, user
interface generators

Design editors, data dictionaries, code
generators

Compilers, interpreters

Cross reference generators, static
analysers, dynamic analysers

Test data generators, file comparators
Interactive debugging systems

Page layout programs, image editors

Cross-reference systems, program re-
structuring systems

Activity-based tool classification

Re-engineering tools
Testing tools
Debugging tools
Program analysis tools

Language-processing
tools

Method support tools
Prototyping tools

Configuration
management tools

Change management tools
Documentation tools
Editing tools

Planning tools

CASE integration

e Tools

clblall) o sadinall ¢ ga¥) Civiual

o
o o
o o
o o
o o
[]
o o
o o
o o o o
o o o o
o o o o
o o o o
Specification Design Implementation \Verification
and
Validation

LL\}J;Y\

« Support individual process tasks such as design consistency

checking, text editing, etc.

o Workbenches

« Support a process phase such as specification or design, Normally

include a number of integrated tools.
Gl 9a¥1 (e 220 Gy sale aranail)) panadill Jie dallaall s o ac i e

« Environments

Janl) 184

alal<iall

Gl

« Support all or a substantial part of an entire software process.

Normally include several integrated workbenches.
OSal 330 ey ke Cilaa) (Aadlas) Blee e LSV 6 3all of JSacyy o

Goulal) o dadieall Ciliaa) daia Jalss

Tools, workbenches, environments

Ll (Jandl oSlal o ga¥)

CASE
technology
Tools Workbenches Environments
. . File Integrated Process-centred
Editors Compilers . -
comparators environments environments
Analysis and Programmin Testin
design g g g

Multi-method Single-method General-purpose Language-specific
workbenches workbenches workbenches workbenches

The Manifesto for Agile Software Development
& ead) Ciliaa yal) g glall alad) Gl
“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

e A el cp AT 5ae L s Lelans Cilima pall 1 shat e Juadl (3)a CaSSH (pai®
pnil] Wis Jaal)
 [Individuals and interactions over processes and tools
< oV s clilaall e e ldilf 5 of 46Y) o
* Working software over comprehensive documentation

el 5 5 le olian il Jac

e Customer collaboration over contract negotiation

Siall Cilia glie o il i o sled e
* Responding to change over following a plan
driall il e piill Dlainy/ o
That is, while there is value in the items on the right, we value the items
on the left more.”

" T) dgall o ol gall agii ¢ cad) dgall e ol gall 8 A8 ellia Loy el

What is “Agility”?
¢ 1 ABLE) (AS Al AdA e)3
o Effective (rapid and adaptive) response to change
oadll i (Sl 5 de pudl) el
o Effective communication among all stakeholders
o Drawing the customer onto the team
Sdl (A Ol (Jam) iy
o Organizing a team so that it is in control of the work performed
Yielding...
ol Jaad) B e Sl sa)5S S Gl mlaii
o Rapid, incremental delivery of software
&L}L:\M).\M 953.1\).\]\ ?:\L.uﬂ\ ZI e

An Agile Process
d805) (AS jal) A543 dallaall
o Is driven by customer descriptions of what is required (scenarios)
(e 5o jliandl) g) Slallate Coa g A (e 3aLal 235
o Recognizes that plans are short-lived
JaV) 5 juadl) laladl) o jay o
o Develops software iteratively with a heavy emphasis on construction
activities

gLl ol e 2SU) e () Sall) a5l el g ko
o Delivers multiple ‘software increments’
"l pall Bl 3 2aatall adludll o
o Adapts as changes occur

st A @yl e il

Extreme Programming (XP)

Al daa
The most widely used agile process, originally proposed by Kent Beck

XP Planning

el i€ IR (e JaaWl a8 cal 5 sad e Laddiiall dxy) (Aallzall) dolend)

A0ll) daa il Jalada

« Begins with the creation of “user stories”
"Q*odiﬁum” u.amg" ;Luui cn i.l.\:t
« Agile team assesses each story and assigns a cost
K g Gty JS s q el (333l
 Stories are grouped to for a deliverable increment
a.ﬁ\.ﬂ)ﬂ “JAN\ e:\Luﬂ L@.LAA e:u uamsj\
+ A commitment is made on delivery date

ailiil "\@)UJ&QJ@.’_'U\

 After the first increment “project velocity” is used to help define

subsequent delivery dates for other increments
aball gy 55 Cay ya5 e Bacluall aadins e g pdiall Ao " (Y1 50l 3 axy
G AY) il 3 Al
XP Design

Autlgl) A pal) avacal

Follows the KIS principle
KIS 53l &)
Encourage the use of CRC cards.
CRC ity il e (aand) 2eluy
For difficult design problems, suggests the creation of “spike
solutions”—a design prototype

sV 3 el el " jlansall Jglat oLl iy damall apensill JSLL]

Encourages “refactoring”—an iterative refinement of the internal

program design

XP Coding

el L) vanaill 5l Sl L&l — " gal) Jlaill sole)" (and) 2ol o

el a8 jind

Recommends the construction of a unit test for a store before
coding commences (Test driven development).
(OREAYIBaE yshat) padall (8 el Ly Al jladl sas g el e a s
Encourages “pair programming”
" 5 3l Al M (pdy) 2ol

o XP Testing
Ailgill daa)l and
+ All unit tests are executed daily
l,).o 9 24 ua;ﬂ\ Slas 9 K .
- “Acceptance tests” are defined by the customer and executed to
assess customer visible functionality

A el 5230 Adpda 5wl 0 5 () 50 30 J8 e A " sl Sl LESIT e

Extreme Programming (XP)
Algdl) dava)
spike solutions

simple design prototypes

CRC cards

user stories
values
acceptance test criteria

iteration plan

refactoring

pair
programming

Release

software increment
project velocity computed

unit test
continuous integration

acceptance testing

Scrum
(A1) dan) all
o Originally proposed by Schwaber and Beedle
s owsSan IR cpn Jua¥l cin 31
o Scrum—distinguishing features
o et Al el — A3V
« Development work is partitioned into “packets”
15" G pashe skl Jae
« Testing and documentation are on-going as the product is
constructed
gl slS jaiine (35l 5 JLEAY)
« Work occurs in “sprints” and is derived from a “backlog” of
existing requirements
52 9 sall ilallaial) MaS) 3 (pa Fida s " | I 8 Janll ilaal o
« Meetings are very short and sometimes conducted without chairs
S 3sa s 09 5 yad Blal Taa 3 jual cilelainll o
« “demos” are delivered to the customer with the time-box allocated

L@J um‘ é}.ﬂ.uaﬂ_i UJJJM ‘_A;\ (-;.L.ﬁ "U"_Il_'\gaj\" .

Scrum
PENEA]
Daily Scrum
Meeting
Backlog tasks
expanded
Sprint Backlog by team
;

Paotentially Shippable
Product Backlog Produet Increment
As prioritized by Product Owner
Source Adapted fram Aok 5o

Dwrepinprnant wilth Scrum by en
Sehwabar and Mike Basds

Crystal
Js
e Proposed by Cockburn and Highsmith
Cueld g 5) eSS PR e m Jia

o e A) jadd) — L)
« Actually a family of process models that allow “maneuverability”
based on problem characteristics
pailad e saiiue 5) hiall ilpele " prant A Aadlaall z3le Alle A58l 5 o
bt SS B “

o Crystal—distinguishing features

+ Face-to-face communication is emphasized
3 Sl da ol la s JuaiV) o
» Suggests the use of “reflection workshops” to review the work
habits of the team
Gl Jae clile aa) el MESaiall L I Aokl e

Key points

A 1) Jalsl)
Software processes are the activities involved in producing and
evolving a software system.

eyl sl (ilpuall) | ghaill 5 Z U1 3 claliil) @l 5380 o cilmal) dallae

Software process models are abstract representations of these
processes.
(Aadladd)) cilileal) 03] 53 ja il fie) Cilaa sl dallas z3lai o
General activities are specification, design and implementation,
validation and evolution.
Dkl (Baual g Bukal g aseal § ((anadld) Glial s daladl cllliall
Generic process models describe the organisation of software
processes. Examples include the waterfall model, evolutionary
development and agile development.
(I 23 gai ALY o ilinaull Aallas Aaliie Cooa Aalall Aallaal) z3lai o
ool o shaill g (bl yy shai) (5 ysdaill yy pdat
Iterative process models describe the software process as a cycle of
activities.
Ll 5 338 eyl dallae Couai 4y) S dalladd) il
Requirements engineering is the process of developing a software
specification.
Glaaa pall Gldal gal o phaill (Aallas) dulee Glllaial) dnia
Design and implementation processes transform the specification to an
executable program.

() 2ll W aliys) lieal sl Jgn aanadll Gkl (lilee) dallan
Validation involves checking that the system meets to its specification
and user needs.
adiiaall Lgaling il g ilial gall e aUaill ¢ Laia) & Gl acaly Goaaill
Evolution is concerned with modifying the system after it is in use.
SR 38 () 5 Lasay Uil Jaaahy Acige (Rlanall) kil o
The Rational Unified Process is a generic process model that separates
activities from phases.
Ja sl (e llLEll Jeady (301 Aalall Zadlaall 3 e 325 sall Ahiall Zallall o
CASE technology supports software process activities.
GUaLiil) dallas Glias p ac X O sulal) aelisay Cilliaa pl) Aia 408,
Agile development methodologies are suggested to deal with the
continuously evolving requirements and the need of company to
deliver software in a reasonable time.

AS) Aala g peiaee JS0 253N clallaiall ga Jolaill g5 g) s gkl Ciliagia o

‘\J}S:.AE.M‘?A«_!\:\M).\M?:\M

o Agile development accept changes on requirements and deal with
them continuously. They focus on the product rather than the
documents. They focus on customer satisfaction rather than contracts.

e O3S L oatee S agae ooy lllaiall e Gl puadll a el skl J&y o
Rl e Yy (s 3l elia) (e 0508 0 @SN e Yoy il

o The 2 factors that affect the software process is the stability of the
requirements and the flexibility to change requirements. We need to
keep a balance between those 2 factors because instable requirements
causes a lot of troubles for the project management, while inflexible
project may have problems with customers and come up to a complete
failure.

) 45 gyl 5 clallaiall i) Claa,ll dallee e o) i O oMledl o
Oo DESI G sl cilillatie OF Cpalalall 138 G 43 e o l&Y rling cldlaiall
Gl pe IS Al (5585 Lay (e el & 5 pall Lai ¢ 5 pall 3)l0Y JSLEA)
Sl JLaSY Csla

